
 

           

 

 
 

 

AUDITOR – GA 687367 

Advanced Multi-Constellation EGNSS Augmentation and Monitoring Network and its 

Application in Precision Agriculture 

 

D3.1 Version 1.0 

GNSS receiver design and implementation 

 

Contractual Date of Delivery: M16 (Apr, 2017) 

Actual Date of Delivery: 28.04.2017 

Editor: Jacobo Dominguez (ACORDE)  

Author(s): Esther López, Jacobo Domínguez, David Abia, José Manuel Sánchez 

(ACORDE); Carles Fernandez-Prades, Marc Majoral, Javier Arribas 

(CTTC); Alberto García Rigo, Manuel Hernández-Pajares (UPC);  

Work package:  WP3 – GNSS receiver module 

Security: CO 

Nature: R 

Version:  1.0  

Total number of pages: 59 

 

Abstract: 

This document contains the GNSS receiver design and implementation that is based on the on 

the previous “D2.1 Architecture definition” and “D2.2 Subsystem specification”. The GNSS 

receiver is composed mainly of two hardware elements a custom multiband/multisystem RF 

Front-End and a commercial ARM/FPGA processing platform. The configurable RF front-end 

and the integration of multiple custom software/firmware components in the ARM/FPGA 

platform provide a flexible and high performance open GNSS receiver implementation. The RF 

front end supports Galileo/GPS bands (E1/L1, L2 o E5a/L5). 
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Executive Summary 

This document summarizes the GNSS receiver design already proposed in D2.1 Architecture 

Definition and extended in D2.2 Subsystem specification. 

The GNSS receiver is composed of two hardware elements: 

 A custom RF front-end designed and implemented within AUDITOR 

 A signal processing platform based on the Zynq-7000 All Programmable SoC that includes a 

FPGA/ARM configuration with custom accelerators and the gnss-sdr-org modules. 

The RF front-end provides two simultaneous receiver chains for Galileo/GPS bands. The first receiver 

chain is fixed to the E1/L1 band. The second receiver chain can be configured either in the E5a/L5 

band or the L2. The RF front-end provides the sampled I/Q signals for these bands to the processing 

platform. 

The processing platforms embed custom accelerators, implemented within WP3, that provide a set 

of high performance and efficient pre-processing functions. Those accelerators are embedded in the 

FPGA and contain multiple correlators and FIFO modules that allows the real-time processing of 

multiple GNSS signals. Moreover the ARM contains the receiver monitoring and control modules and 

the high level GNSS related functions that are based on the open source project GNSS-SDR.org. This 

open source project is maintained by CTTC and enables Linux distributions to implement a GNSS 

software receiver. 

In this document the design and implementation of both components is detailed as well as the main 

internal and external monitoring and control interfaces. The GNSS receiver implements an innovative 

ionospheric model that is supported by data streams from cloud computing platforms both 

developed within WP4/WP5. 
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1. Introduction 

In a previous deliverable [1] the overall architecture for the AUDITOR system has been presented. 

This architecture was further refine in [2]. The architecture introduced [1] and [2] is summarized in 

Figure 1.1. 

 

Figure 1.1: System Architecture 

This document is focused in the work performed by ACORDE FRONT-END Module (see Figure 1.1 

left), CTTC High Accuracy Software Module (see Figure 1.1 bottom-right). The work carried out by 

UPC (Network Software) in collaboration with TUM that involves the iBOGART Cloud related to the 

innovative ionospheric model and the generation/processing of its data streams is detailed in the 

WP5/WP4 deliverables [3] and [4], also submitted in M16 . 

The GNSS receiver is composed of two hardware elements depicted in Figure 1.1: 

 RF front-end module 

 Digital processing platform 

This document in the following sections details the design and implementation of both elements 

including their custom hardware and main software/firmware modules. 
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2. GNSS RF Front-End Module (ACORDE) 

The RF FE down converts the GALILEO and GPS bands L1/E1, L2 or L5/E5a to a low intermediate 

frequency and provides the digitalized I/Q stream. It is composed of two independent RF channels. 

The first channel receives the E1/L1 band and down converts it to IF in a single step. The configurable 

channel, either for the L2 or E5a/L5 bands, includes a similar schema but adding a twostep 

downconverter. The fixed and one of the configurable bands can operate simultaneously. The 

configurable band can only operate L2 or E5a/L5 as these bands share parts of the configurable 

receiver RF chain. 

One critical element of the RF FE is the clock generation and distribution. All the clock signals need 

to be phase-synchronized; therefore they are generated from a single low noise reference oscillator. 

This reference signal is pre-scaled and distributed to the mixers/downconverters and ADC in order to 

extend this synchronization to the digital generation of the I/Q samples. 

The RF FE embeds also its monitoring and control logic that can be interfaced via a standard serial 

port and allows enable/disable RF elements and configuring the down conversion and acquisition 

parameters of both RF chains.  

Two versions of the RF front-end (FE) were designed, v1.0 and v2.0. The specifications used as 

reference for the design were defined in collaboration with other partners in [2] Section 2. The first 

version (v1.0) is focused on the validation of the RF design. This preliminary functional version allows 

an early assessment within the digital platform. The second version (v2.0) rationale is to improve the 

RF performance mitigating the effects of electromagnetic interference (EMI) and the redesign of the 

clock distribution to optimize the synchronization characteristic. This second version was also resized 

taking into account the form factor of the proposed high performance digital platform module in [2], 

the Zynq ZC706 Evaluation Kit shown in Figure 2.1, which provides extension with external modules 

via FMC connectors. 

 

Figure 2.1: ZC706 Evaluation Kit top layer layout 

The main parameters of the FE specification were defined in [2] and have been included here in 

Table 2.1 for convenience. An additional column “Implementation Comments” to extend the initial 

specification with the implementation results of both v1.0 and v2 has been added. 
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Table 2.1: Front End Specification 

Channel  Implementation Comments 

Channel 1 (fixed) L1/E1 yes Yes, in FE v1.0 and v2.0 

Channel 2 (configurable) L2C yes Yes, in FE v1.0 and v2.0 

L5/E5a  yes  

Frequency bandwidth Implementation Comments 

Sampling frequency (in 
MHz)1 
  

L1/E1 ~4 MHz + 2xIF Configurable IF filter 
26MHz/5=5.2MHz 

L2C ~4 MHz + 2xIF Sampled at:   
- 26MHz/5=5.2MHz 
- 26MHz/4=6.5MHz 

L5/E5a ~25 MHz + 2xIF Sampled at 26/1=26MHz 

 Option a: L1/E1 
and L2C 

~4 MHz + 2xIF Sampled at 26MHz/5=5.2MHz 

 Option b: L1/E1 
and L5/E5a 

~25 MHz + 2xIF Sampled at 26/1=26MHz 

Bits per sample Implementation Comments 

Each channel will generate 8 bits I + 8 bits Q in 2's 
complement. 

Yes, in FE v1.0 and v2.0 

The adapter module in the Zynq will be in charge of reading 
these inputs and converting them to baseband. 

Tested in v1.0, implemented 
now by CTTC. 

Intermediate Frequency  Implementation Comments 

Depending on the band and architecture, Zero-IF may not be 
achieved. Different IF frequencies (from several kHz to a few 
MHz) would be used instead. Sampling frequency would 
higher than defined to cope with the IF 

 

IF 
  

L1/E1 Up to 1 MHz  L1 IF 418kHz 

L2C Up to 1 MHz L2 IF 609kHz 

L5/E5a Up to 1 MHz L5 IF 404kHz 

AGC Implementation Comments 

 The gain provided by the AGC needs to be known in 
the receiver side (can be at low rate, using SPI or I2C). 

 Possibility to fix that gain by software (required by 
some test procedures). 

Configurable amplifier stages 
via serial port 0dB-69dB 

Reference oscillator Implementation Comments 

Accuracy <= 0.5ppm <0.2ppm 

External oscillator 
option YES (SMA female connector) 

Added in RF FE v2.0 

Antenna input Implementation Comments 

Connector type SMA female Yes, in FE v1.0 and v2.0 

Impedance 50 ohms Yes, in FE v1.0 and v2.0 

On-board DC Bias-T (for 
active GNSS antenna) 

YES (5v DC output is required to 
power the GNSS antenna LNA) 

DC power for external active 
antennas reduced to 3.3V 

Signals Summary Implementation Comments 

CH1 DATA In-phase component (real part) 8 Yes, in FE v1.0 and v2.0 

CH1 DATA Quadrature component 8 Yes, in FE v1.0 and v2.0 

                                                           

1
 Exact value depends on local oscillator configuration and internal crystal parameters, a configurable sampling frequency of 

6.25/12.5/25 Msps will be available for all channels to assess different data rates capabilities. 
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(imaginary part) 

CH2 DATA In-phase component (real part) 8 Yes, in FE v1.0 and v2.0 

CH2 DATA Quadrature component 
(imaginary part) 

8 Yes, in FE v1.0 and v2.0 

Sample CLOCK 1 Yes, in FE v1.0 and v2.0 

VCC 1 Yes, in FE v1.0 and v2.0 

GND 1 Yes, in FE v1.0 and v2.0 

 

As it can be seen in the previous Table 2.2, all the specification have been achieved or improved and 

more configurable options are included in terms of IF selection or sampling bandwidth. 

In terms of the electrical specification for both designed FE their key parameters are summarized in 

Table 2.2. 

Table 2.2: Electrical specifications 

Parameter Conditions Min. Typ. Max. Units 

POWER SUPPLY 

VCC Supply voltage operation  
5 (v1.0) 

12 (v2.0) 
 V 

ICC Current consumption  500  mA 
DIGITAL INTERFACE 

Digital Logic-High All pins  2.3  V 
Digital Logic-Low All pins  1  V 

OUTPUT CLOCK 

CLK_OUTFREQUENCY System clock frequency 4.25 6.5 26 MHz 
RF INTERFACE 

ZIN Input impedance  50  Ω 
NF Front-End Noise Figure   3 dB 
VANT Active antenna supply voltage  3.3  V 
IANT Antenna supply current   20 mA 

 

The main difference between both FE v1.0 and FE v2.0 in terms of electrical characteristic is the 

increase of the supply voltage to 12V. This voltage supply level is the standard value for Zynq boards 

(MicroZed, ZedBoard…) and is also commonly one of the main power supplies in ground vehicles. 

2.1 RF Front-End v1.0 

The design and implementation of the first prototype was based on ACORDE previous experience 

with earlier E1/E6 front-end designs, as the one presented in [5] and shown here in Figure 2.2. 
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Figure 2.2: ACORDE’s previous E1/E6 Front-End v2 (size 10 x 8 cm2) 

The more challenging elements in AUDITOR design are the integration of multiple bands and the 

correct synchronization of the digital sampling clock and RF reference oscillator: 

 Reference clock: 

o Distribution required either square or sin signals depending on the component 

RF/digital nature. 

o Voltage must be carefully distributed to feed modules with different voltage levels 

and/or DC terms. 

o Squared digital signals introduced several harmonics that could potentially interfere 

with other digital/RF modules. 

 Configurable Downconverter: 

o Full input dynamic power need to be provided in order to work in optimal conversion 

conditions. 

o Must minimize the mix with unwanted internal or external frequencies. 

o Inductions and capacitance effects need to be minimized on all inputs/outputs to 

reduce the noise and possible spurious frequencies. 

o Shall provide enough configuration range to cover both L2 and E5a/L5 bands. 

 Fixed Downconverter: 

o The optimal input power need to be provided also taking into account its internal 

configuration options that allows setting different gain factors. 

o Exact configuration of its internal parameters is needed but datasheet information is 

not full documented. This requires to perform additional standalone measurements 

to assess its performance with different internal configurations.  

o AGC module needs to be built externally to the downconverter to take into account 

all the external LNAs and provide the optimal dynamic range for both 

downconverters and finally the output ADC. 
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2.1.1 Design 

The initial design and specification identified in [2], was refined to the design shown in Figure 2.3. 

 

Figure 2.3: RF FE v1.0 design 

This design follows closely the specification of [2] but introduces two different RF chains for the L2 

and E5a/L5 bands that shared the same digital control & monitor logic. An important part of the 

design is the clock generation module that from a single reference crystal creates all the reference 

oscillators and digital clocks signals to distribute to the downconverters and ADCs. 

The two antennas connectors simplify the initial tests with independently single-band antennas. The 

next FE version proposes one multiband antenna instead that are more widely commercialized and 

provide up to three bands reception in a single module. 

The fixed and configurable band uses a similar output dowconverter (MAX2769) and ADC stage in 

order to simplify the overall design and provide similar performance for all bands. In this way, the 

configurable band requires and additional downconversion stage to adapt, either the input L2 or the 

E5a/L5 band to the final dowconverter band that is centered in all cases at L1. 

 Interfaces 2.1.1.1

Four external interfaces are included in the design: 

• Power connector: power supply. 

• Serial connector: UART0 of the embed control microcontroller. 

• JTAG connector: for programming and debugging the control logic. 

• User connector: 20+20pin custom connector for data out and external control. 

The serial connector provides a basic debug interface while the power connector is the main energy 

source of the board provided from a Zynq compatible board. The Table 2.3 summarizes the pin-out 

for both connectors. 
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Table 2.3: Serial and power connector 

Serial debug connector 

Pin Description 

1 GND 

2 UART RX (3.3V) 

3 UART TX (3.3V) 

4 aux 
 

Power connector 

Pin Description 

1 +5V 

2 GND 

3 GND 

4 +12V (do not connect) 
 

 

The user connector is the main data interfaces to the digital processing platform detailed in section 

3. Table 2.4 lists with different colors all the pins in the 20+20 pins USER connector that is mainly 

composed of I/Q data bits for both channels, the reference clock and the monitoring & control serial 

port.  

Table 2.4: 20+20 pins USER connector 

Pin Description 
Direction 

Pin 
Descriptio

n 

Direction 

1 I7 (E1) Out 2 I6 (E1) Out 

3 I5 (E1) Out 4 I4 (E1) Out 

5 I3 (E1) Out 6 I2 (E1) Out 

7 I1 (E1) Out 8 I0 (E1) Out 

9 Q0 (E1) Out 10 Q1 (E1) Out 

11 Q2 (E1) Out 12 Q3 (E1) Out 

13 Q4 (E1) Out 14 Q5 (E1) Out 

15 Q6 (E1) Out 16 Q7 (E1) Out 

17 GND N/A 18 UART  RX In 

19 
Do not 

connect 

N/A 
20 UART TX 

Out 

21 CLOCK Out 22 NC N/A 

23 NC N/A 24 GND N/A 

25 I7 (E6) Out 26 I6 (E6) Out 

27 I5 (E6) Out 28 I4 (E6) Out 

29 I3 (E6) Out 30 I2 (E6) Out 

31 I1 (E6) Out 32 I0 (E6) Out 

33 Q0 (E6) Out 34 Q1 (E6) Out 

35 Q2 (E6) Out 36 Q3 (E6) Out 

37 Q4 (E6) Out 38 Q5 (E6) Out 

39 Q6 (E6) Out 40 Q7 (E6) Out 

Where the I/Q samples are expressed in 2’s complement. All of these pins are 3.3v digital signals 

except the clock signal that is an analog sine signal. 

2.1.2 Implementation 

The layout for the designed FE was implemented in a four layer schema that includes two signal 

planes. The designed layout is shown in Figure 2.4.  
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Figure 2.4: FE v1.0 top layer layout, (153mm x 104mm) 

The configurable L2 or E5a/L5 RF chain can be identified on the left with its main RF parts covered by 

a large RF shield. Two different antenna connectors were used in order to add more flexibility, 

simplify the input stage and better isolated both channels as introduced in section 2.1.1. 

On the lower-right area the fixed E1/L1 chain, that is simpler than the configurable chain, is shown 

also including its shielding and antenna connector. 

The center-right of the PCB is dedicated to the clock generation and the embedded microcontroller 

that monitors and controls all the RF elements and provides the serial external interfaces via de User 

Connector. 

Several testing points and led indicators are located on the upper-left to ease the testing and 

validation procedures. 

On the upper-right several regulators define the core components that implement the power 

networks to provide the 5V supply voltage. 

The designed layout was manufactured and the main components mounted as show in Figure 2.5. 
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Figure 2.5: FE v1.0 PCB top layer  

The main external connectors of this PCB located on the right side (excluding the antenna 

connectors) are as show in Figure 2.6: 

 Power connector labelled as P1. 

 Serial connector labelled as P3. 

 JTAG connector labelled as J1. 

 User connector 20x20 pint out. 

 

Figure 2.6: FE v1.0 external connectors 

This PCB was tested in laboratory using a wide range of RF equipment, the main test performs and its 

results are summarized in 2.1.2.1. 

Several issues were identified during the laboratory tests that required the redesign of the clock 

generation/distribution section and the improvement of resilience to EMI. The clock issues could be 

solved in the current PCB by carefully bypassing and replacing some digital components, while the 

EMI was reduced by additional external shields and improving the grounding of the main RF 

components. Theses fixes and the modification of the form factor of the PCB were the main design 

parameters to drive the design and implementation of the FE v2.0 detailed in section 2.2. 
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 Tests 2.1.2.1

In this section snapshots of some measurements performed in the RF laboratory are summarized. For 

each measurement its rationale, the main inputs/outputs and its results are listed with photos of 

the different equipment involved. 

Testing equipment setup: 

 Measurement rationale: check quality of the desired band that will be sampled at L2. 

 Input: carrier frequency at L2. 

 Output: IF signal of L2 carrier after downconversion. 

 Summary: A clean signal can be seen in Figure 2.7 with not relevant spurious near the IF 

frequency. 

 

Figure 2.7: FE v1.0 measurement, testing equipment. 

GPS L1 band single tone: 

 Measurement rationale: check quality of the desired band that will be sampled at L1. 

 Input: carrier frequency at L1. 

 Output: IF signal of L1 carrier after downconversion. 

 Summary: A clean amplified signal and bandwidth curve can be seen in Figure 2.8 without 

any other spurious near the IF. The aim is to obtain maximum signal power without spurious 

and a bandwidth clean from other signals to be sampled at L1. 
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Figure 2.8: FE v1.0 measurement, GPS L1 band single tone, IF at 418 kHz (BW 2.5 MHZ).  

 

GPS L2 band single tone: 

 Measurement rationale:  check quality of the desired BW that will be sampled at L2. 

 Input: carrier frequency at L2. 

 Output: IF signal of L2 carrier after downconversion. 

 Summary:  A clean amplified signal and bandwidth curve can be appreciated in Figure 2.9 

without any other spurious near the IF. The main objective of these measurements is to 

maximize signal power without increasing the spurious contributions at L2. 

 

Figure 2.9: FE v1.0 measurement, GPS L2 band single tone, IF at 609 kHz (BW 2.5 MHZ). 

GPS L5 band single tone: 

 Measurement rationale: check quality of the desired band that will be sampled at L5. 

 Input: carrier frequency at L5. 

 Output: IF signal of L5 carrier after downconversion. 

 Summary: A clean amplified signal and bandwidth curve can be appreciated in Figure 2.10 

without any other spurious near the IF. The main objective of these measurements is to 

maximize signal power without increasing the spurious contributions at L5. 
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Figure 2.10: FE v1.0 measurement, GPS L5 band single tone, IF at 404 kHz. (BW 12.5 MHz). 

OL phase noise: 

 Measurement rationale: the quality of the reference oscillator is a critical parameter to the 

downconversion of Galileo/GPS bands in order to not to degraded the input signal. 

 Input: Reference oscillator. 

 Output: phase noise of this local oscillator signal. 

 Summary: measure is below phase noise limits identified in [6], values shown in Figure 2.11 

are:  

o -70.28 dBc/Hz @ 100Hz 

o -81.13 dBc/Hz @ 1 kHz 

o -80.78 dBc/Hz @ 10 kHz 

o -105.53 dBc/Hz @ 100 kHz 

o -118.59 dBc/Hz @ 1MHz 

 

Figure 2.11: OL phase noise measurement. 

2.2 RF Front-end v2.0 

Taking into account the experience acquire with the RF FE v1.0 and the feedback from AUDITOR 

partners a new version of the FE was designed. This redesign focused on: 

 The clock generation/distribution. 

 Reduction of EMI between the different RF chains and digital components. 

 Layout refactor and an additional FMC-LPC connector to interconnect to the ZC706 

Evaluation kit. 
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2.2.1 Design 

The new design of the RF FE does not introduce important modifications in the architecture design. 

The main architecture changes were the use of a single multiband antenna and reorganization of the 

upper section of the two configurable bands as shown in Figure 2.12. 

 

Figure 2.12: RF FE v2.0 design 

Additionally, the following improvements were applied to the overall design: 

 Increased filtering in all digital lines to mitigate ringing and high frequency coupling, 

 Two independent clock circuits are included based on two different distribution principles to 

evaluate the clock quality and isolation of both options with the other components. 

 Integrated a single-ended IC (MAX444) to allow in-PCB single-ended measurements without 

additional external elements. 

 Merged in the configurable band both RF chains to simplify input stages and optimize the 

input power to the first downconverter. 

 An additional UART and several digital I/O have been added to the existing interfaces to add 

more configuration and testing flexibility. 

 Distributed power supplies have been integrated that offer better linearity which will directly 

impact in the improvement of the quality of the amplified signals for all LNAs. 

In this new FE a common two level amplifier stage now is located close to the antenna. The filtering 

for the different bands is separated just before the first configurable down converter that feeds the 

second fixed downconverter. Using this shared L2/E5a/L5 approach optimizes the layout space while 

reducing power consumption and simplifies the RF design. 

The RF chain gains have been optimized using two LNA to use the full dynamic range of the two 

downconverters and avoid saturation that would lead to an increase of the output spurious signal 

power. 
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 Interfaces 2.2.1.1

The four external interfaces included in the v1.0 design have not been deeply modified in order to 

provide backward compatibility. The main changes can be summarized as: 

• Power connector: changed to multiple power connectors ±12V, ±5V, 3.3V 

• Serial connector: No changes in the existing one but added an additional UART1. In v1.0 

UART0 was the only one available both in the serial and user connector. 

• JTAG connector: No changes 

• User connector (20+20pin custom connector): No changes in the user connector, added 

an additional FMC LPC. 

The main changes involved the user connector that shares the same distribution as the v1.0. 

However, an additional FMC-LPC connector with similar pinout has been added in order to provide 

direct compatibility with the ZC706 evaluation kit FMC connector. 

2.2.2 Implementation 

In the FE v2.0 several modifications were applied to the layout in order to minimize EMI, clock and 

power distribution issues.  

 The vias density has been increased and its layout has been optimized to improve the ground 

layer and the guidance of high frequency signals.  

 Power supplies (±12V, ±5V, 3.3V) have been redesigned and its layout has been distributed 

in several groups close to their powered components. 

 RF layout has been straightened as much as possible to minimize EMI corner issues, 

therefore RF components needed also to be redistributed to follow those new linear paths. 

 Test points are now included later in the lab within the RF line if needed. 

 Additional filters have been added to the layout to mitigate inducted signals for adjacent 

lines. 

 All IC are better decoupled with inline protection resistors. 

 Power supply lines now included fusible resistor in order to track possible short circuit issues 

and also avoid ringing and the propagation of unwanted signals thought VCC networks. 

The redesigned layout is shown in Figure 2.13, as it can be easily appreciated that its composition has 

suffer important changes since the v1.0 show in Figure 2.4. 

On the left side both RF fixed/configurable channels can be identified with their respective antenna 

connectors. The lower-right part of the PCB is now dedicated mainly to the digital and clock modules. 

The new form factor is compliance with the ZC706 evaluation kit and an additional FMC-LPC 

connector in the bottom layer to allow direct connection. 
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Figure 2.13: FE v2.0 top layer layout, (153mm x 108.9mm+17.9mm) 

The interconnection concept for the final configuration of the FE v2.0 and the ZC706 evaluation kit 

board is pictured in Figure 2.13. The direct connection simplifies the tests avoiding the use of high 

performance FMC cables which still is possible as the FE v2.0 can be stacked below the ZC706 board. 

 

Figure 2.14: ZC706 connected via FMC-LPC to FE v2.0 layout 
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2.2.3 Tests 

The FE v2.0 PCB is currently being manufactured. Tests performed in v1.0 will be repeated in this 

new version to confirm that the design and layout improvements result in noticeable performance 

benefits. FE v1.0 is already a functional E1/L1, L2 or E5a/L5 functional RF front-end. 

2.3 Firmware 

The FE is fully configurable through serial port P3 (+3.3v) that is connected to the embedded 

microcontroller. A custom firmware has been developed to monitor and control the main FE 

parameters from the digital processing platform. 

A typical boot phase can be described as:  

 Once the system powered (5V v1.0 or 12V v2.0), the module starts loading the default 

configuration where the ADCs are not enable,  

 GPS L2 band is selected and a sampling clock of 6.5MHz is used, 

 L1 downconverter IC is enabled too, 

 All integrated circuits (IC) need to be enable/disable to set the desired configuration using 

the serial port. 

If the user needs to change the configuration to down convert GPS L5 to IF the typical steps should 

be: 

1. Plug the L5 antenna. 

2. Set multiplexer to L5 instead of L2 

3. Enable VCO integrated circuit. 

4. Config VCO IC with the L5 default configuration. 

5. Enable L5 max IC downconverter. 

6. Enable L5 ADC. 

7. Choose the sampling clock if a different frequency is needed. 

8. Select different IF low pass filter if it is needed to reduce noise. 

9. Change last downconverter IF stage gain if it is needed to achieve the optimal signal power. 

On the other hand, if the desired band is L1, the first stage mixing is not necessary, so the steps 

needed to down convert this band starts at step 5 of the check list. 

2.3.1 Message formats 

The UART parameters to communicate with the AUDITOR front-end should be configured at: 

 9600 baud,  

 8bits,  

 Parity None,  

 One stop. 

The messages sent to the FE that comply with the protocol are responded with and ACK message in 

the form of an ASCII “OK” or an NACK message “NACK”. Other serial messages that are not well-

formed are considered incorrected and therefore ignored. All serial port messages must end with 

one carrier-return followed by one end-of-line character (\r\n). 

Recommended initial steps are: 

1. Once the serial port is open the user can check the correct communications requesting “ping 

message” to the front-end and the front-end should respond an ACK message “OK”. 
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2. The second recommended step is to check the current front-end configuration that can be 

obtained sending the “???” message to the front-end. The response should be a human 

readable message where the current state of all ICs is explained, followed by an “OK” 

message. 

3. After these two steps the user need to send the messages needed to achieve the 

configuration to the main downconverter, as explained in section 2.3 for reference. 

Following the example in section 2.3, Table 2.5 details the serial messages needed to perform the 

configuration.  

Table 2.5: Serial messages example 

Step Command Serial message 

1 Set multiplexer to L5 instead of L2  < cML2<CR><LF> 
> OK 

2 Enable VCO integrated circuit. < cVe<CR><LF> 
> OK 

3 Config VCO IC with the L5 default 

configuration. 

< cV5<CR><LF> 
> OK 

4 Enable L5 max IC downconverter. < cL2o1<CR><LF> 
> OK  
< cL2t1<CR><LF> 
> OK 

5 Enable L5 ADC. < cA2e<CR><LF> 
> OK 

6 Choose the sampling clock if a 

different frequency is needed. 

< cc3<CR><LF> 
> OK 

7 Select different IF low pass filter 

(18Mhz) if it is needed. 

< cL2f531<CR><LF> 
> OK 

 

Sending the previous list of commands and applying an IF 1176.45 MHz sine signal to L5 inputs, the 

signal in Figure 2.10 will be shown in the spectrum analyzer. 

The following Table 2.6 lists the full list of UART serial messages that can be used to configure the FE. 
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Table 2.6: list of serial messages. 

  

 

2.4 Summary of RF testing 

In [6] the unit tests for the RF hardware were specified (subsection 4.1). In Table 2.7 the results from 

the compliance with the proposed test, are summarized. 

Table 2.7: GNSS RF chain tests 

Test ID Objective Results 

RF testing 

GNSS RF input chain Verify functionality of the 

GNSS RF chain 

Output tones input to downconverter 

within correct power and frequency 

levels. 

Reference clock Verify clock stability and 

amplitude 

Measured phase noise ref TCXO (26MHz): 

-103 dBc/Hz <-103@1KHz 

-119 dBc/Hz < -116@10KHz 

-121 dBc/Hz < -122 @100KHz 

-123 dBc/Hz < -135 @1MHz 
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Measured phase noise ref oscillator 

(2750 MHz): 

-116 dBc/Hz < -80 dBc/Hz @10Khz 

-122 dBc/Hz < -107 dBc/Hz @ 100KHz 

-135 dBc/Hz < -129 dBc/Hz @ 1MHz 

Intermediate Frequency Verify IF output IF frequencies correctly configured 

deviation below  10KHz 

Wireless interface Verify functionality of the 

wireless interface (Wi-Fi or 

3G, TBC) 

Not applicable to the RF FE, will be 

implemented in the digital processing 

platform using a standard wireless 

adapter. 

RF front-end electrical performance 

Data bandwidth Verify data bandwidth for 

each band 

Generated samples at 5.2MHz for L1 

Generated samples at 5.2/6.5MHz for L2 

Generated samples at 26MHz for L5 

(decimation of samples performed in 

digital processing platform) 

Out-of-band filtering Verify filtering of out-of-

band using testing tones 

Filtering of out-of-band >60dB @ CF ±50 

MHz 

Quantization bits Verify ADC bit resolution by 

histogram examination 

Generated histograms via the offline 

post-processed of the ADC inputs. 

Optimized AGC to use full ADCs dynamic 

ranges.  

Noise figure Noise figure estimation 2-3dB (@ dowconverter input) < 4dB 

Frequency bands Verify available frequency 

bands simultaneously or 

selectable 

L1, L2 bands tested I/Q samples 

generated at baseband 

Electromagnetic shielding Verify GNSS and wireless 

interface RF shielding 

EMI reduced by multiple shielding covers 

and signal layout. Several improvements 

performed in v2.0. 

PCB Testing procedures 

Printed circuit board Verify functionality of the 

printed circuit board 

PCB electrical tests performed, no 

noticeable manufacturing issues 

detected. 
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3. Digital Processing Platform (CTTC) 

The Digital Processing Platform is the device in charge of executing the software-defined GNSS 

receiver and other related controlling programs. In this WP, the design described in Deliverable 2.2 

has been consolidated and implemented. In summary, it consists of a Xilinx’s Zynq-based platform, a 

System-on-Chip (SoC) that contains an ARM processor and a FPGA processor. The ARM processor 

(known as Processing System or PS) runs GNSS-SDR, the open source software receiver developed 

within AUDITOR, along with some control scripts, and the FPGA processor (known as Processing Logic 

or PL) executes some specific functions of the software receiver in order to increase the number of 

satellites that can be acquired and tracked in real time.  

According to some experiments (which results were reported in [7]), the dual-core ARM processor 

that is shipped in a Zynq is not powerful enough to sustain real-time processing of GNSS signals even 

in the most basic configuration (GPS L1 C/A, 2 Msps). Other ARM-based platforms (such as Raspberry 

Pi 3, which ships a quad-core processor) are able to sustain about 6-8 satellites in real-time, which 

are enough for getting PVT fixes but not for applications targeting high accuracy. Thus, the 

acceleration provided by the PL is of key importance in order to deliver quality GNSS observables in 

real time when using an embedded system, and benefiting from their low power consumption, small 

size, rugged operating ranges, and low per-unit cost. 

 

3.1 Zynq Processing System (PS) 

3.1.1 Development cycle  

This Section describes the development cycle for building and executing GNSS-SDR, its corresponding 

Quality Assessment code and the control system scripts in an embedded computer. In this example, 

we are working with a ZedBoard (a development board that ships a Xilinx Zynq-7000 all-

programmable SoC, which houses two ARM and one FPGA processor in a single chip), but this 

procedure is applicable to other embedded platforms without much modification. 

Once all the required dependencies are already installed, GNSS-SDR can be built from source in ARM 

processors without requiring any extra configuration step. However, this building process can easily 

take more than 10 hours if it is executed on the Zynq device. Thus, in order to speed up the 

development cycle from a change in the source code to the execution in an embedded platform, we 

need to resort to cross-compilation. 

 

Cross-compilation consists of a building framework capable of creating executable code for a 

platform other than the one on which the compiler is running. In our example, we would like to build 

GNSS-SDR with the powerful, fast processor of a general-purpose desktop computer, and to generate 

binaries that can be directly executed by the Zynq device. By using cross-compilation, we can shorten 

the building time from more than 10 hours to less than 10 minutes. This improves Testability 

(defined in Deliverable 1.3, see [6]), as one of its requirements is that a testing cycle has to be fast. 

 

The cross-compilation environment proposed here is based on OpenEmbedded (see 

http://www.openembedded.org), a building framework for embedded Linux. OpenEmbedded offers 

a best-in-class cross-compile environment, allowing developers to create a complete, custom 

GNU/Linux distribution for embedded systems. Using OpenEmbedded, we created a software 

http://www.openembedded.org)/


AUDITOR  D3.1 Version 1.0 

 Page 30 (59) 

developer kit (SDK) that installs a ready-to-use cross-compilation environment in the user’s 

computer. The SDK has been made publicly and freely available at http://gnss-

sdr.org/docs/tutorials/cross-compiling/, along with detailed instructions to allow users to build their 

own customized SDK. 

 

The SDK provides the toolchain installer, a script that installs a cross-compiler, a cross-linker and a 

cross-debugger, forming a completely self-contained toolchain which allows users to cross-develop 

on the host machine for the target hardware. Cross-compilation if of paramount importance to 

accelerate the development and testing of GNSS-SDR in embedded systems. 

 

The general procedure can be summarized as follows (more details in the website): 

 

1) Get the Software Development Kit. There are two options here: 
a. Download it from http://gnss-sdr.org/docs/tutorials/cross-compiling/ 
b. Customize and build your own SDK (instructions provided in the website) 

 

2) Install the SDK. This consists of a one-line command which executes a shell script: 
 
$ sudo sh oecore-x86_64-armv7ahf-neon-toolchain-nodistro.0.sh 

 

3) Setting up the cross-compiling environment. Running the environment script will set up 
most of the variables required to compile GNSS-SDR This has to be executed each time you 
want to run the SDK (and since the environment variables are only set for the current shell, 
you need to source it for every console you will run the SDK from): 
 

$ . /usr/local/oecore-x86_64/environment-setup-armv7ahf-neon-oe-linux-gnueabi 

 

4) Cross-compiling GNSS-SDR and installing it on the target filesystem 

$ git clone https://github.com/gnss-sdr/gnss-sdr.git 

$ cd gnss-sdr 

$ git checkout next 

$ cd build 

$ cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/Toolchains/oe-sdk_cross.cmake \ 

-DCMAKE_INSTALL_PREFIX=/usr .. 

$ make 

$ sudo make install DESTDIR=/usr/local/oecore-x86_64/sysroots/armv7ahf-neon-oe-linux-

gnueabi/ 

 

Please note that we set the install prefix to /usr. That will be the installation location of the 

project on the embedded device. We use this because all links and references within the file 

system will be based on this prefix, but it is obviously not where we want to install these files 

on our own host system. Instead, we use the make program’s DESTDIR directive. On the 

device itself, however, the file system would have this installed onto /usr, which means all 

our links and references are correct as far as the device is concerned. 

 

5) Copying an image file to the SD card that will be then inserted into the ZedBoard. The 
website http://gnss-sdr.org/docs/tutorials/cross-compiling/ describes several methods to do 
this. 

 

http://gnss-sdr.org/docs/tutorials/cross-compiling/
http://gnss-sdr.org/docs/tutorials/cross-compiling/
http://gnss-sdr.org/docs/tutorials/cross-compiling/
http://gnss-sdr.org/docs/tutorials/cross-compiling/
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This procedure generates a fully functional, customized Linux distribution that will run on the 

Processing System, allowing the execution of GNSS-SDR module and all the required control and 

interface scripts. 

 

3.1.2 GNSS-SDR module  

GNSS-SDR is an open source project that implements a global navigation satellite system software 

defined receiver in C++. With GNSS-SDR, users can build a GNSS software receiver by creating a graph 

where the nodes are signal processing blocks and the lines represent the data flow between them. 

The software provides an interface to different suitable RF front-ends and implements the entire 

receiver’s chain up to the navigation solution. Its design allows any kind of customization, including 

interchangeability of signal sources, signal processing algorithms, interoperability with other systems, 

output formats, and offers interfaces to all the intermediate signals, parameters and variables. 

 

The goal is to provide efficient and truly reusable code, easy to read and maintain, with fewer bugs, 

and producing highly optimized executables in a variety of hardware platforms and operating 

systems. In that sense, the challenge consists of defining a gentle balance between level of 

abstraction and performance, addressing: 

 Concurrency (take advantage of multicore processors). 
 Efficiency (take advantage of the specific processor architectures). 
 Performance (and how to measure it!). 
 Portability (should live in a complex, dynamic ecosystem of operating systems and processor 

architectures). 
 Ability to run in real-time or in post-processing. 
 Extendibility (easy addition and test of new algorithms and implementations). 

 

The proposed software receiver runs in a wide range of processor architectures (including 

AUDITOR’s) and provides interfaces to a variety of either commercially available or custom-made RF 

front-ends (such as AUDITOR’s), adapting the processing algorithms to different sampling 

frequencies, intermediate frequencies and sample resolutions. It also can process raw data samples 

stored in a file. The software performs signal acquisition and tracking of the available satellite signals, 

decodes the navigation message and computes the observables needed by positioning algorithms, 

which ultimately compute the navigation solution. It is designed to facilitate the inclusion of new 

signal processing techniques, offering an easy way to measure their impact in the overall receiver 

performance. Testing of all the processes is conducted both by the systematic functional validation of 

every single software block and by experimental validation of the complete receiver using both real 

and synthetic signals. The processing output can be stored in Receiver Independent Exchange Format 

(RINEX), used by most geodetic processing software for GNSS, or transmitted as RTCM 3.2 messages 

through a TCP/IP server in real-time.  

 

GNSS-SDR module’s design was described in Deliverable 2.2 (see [2]), Section 3.4.2. Basically, it 

consists of a control plane and a signal processing plane, described below. 
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 Control plane 3.1.2.1

The Control Plane (which design was described in Deliverable D2.2 [2], Section 3.4.2.1) is in charge of 

creating a flow graph of interconnected nodes. The nodes represent signal processing blocks, and the 

link between nodes represent unidirectional flows of data. Then, an underlying scheduling system 

takes data samples from signal sources (that is, a file or actual digitized GNSS signals coming from the 

output of a RF front-end) to signal sinks (that is, blocks in charge of displaying or storing the final 

results of the signal processing).  

 

This process scheduling is a key feature to achieve real-time, and to scale well when the software is 

executed in a more powerful processor. Task parallelization focuses on distributing execution 

processes (threads) across different parallel computing nodes (processors), each executing a 

different thread (or process) on the same or different data. Spreading processing tasks along 

different threads must be carefully designed in order to avoid bottlenecks (either in the processing or 

in memory access) that can block the whole processing chain and prevent it from attaining real-time 

operation. This section provides an overview of the task scheduling strategy implemented in GNSS-

SDR. 

 

GNSS-SDR uses a “thread-per-block” scheduler, which means that each instantiated processing block 

runs in its own thread. This architecture scales very well to multicore processor architectures. The 

implementation is provided by GNU Radio (see https://gnuradio.org), whose flow graph 

computations can be jointly modelled as a Kahn process [8], [9]. A Kahn process describes a model of 

computation where processes are connected by communication channels to form a network. 

Processes produce data elements or tokens and send them along a communication channel where 

they are consumed by the waiting destination process. Communication channels are the only 

method processes may use to exchange information. Kahn requires the execution of a process to be 

suspended when it attempts to get data from an empty input channel. A process may not, for 

example, test an input for the presence or absence of data. At any given point, a process can be 

either enabled or blocked waiting for data on only one of its input channels: it cannot wait for data 

from more than one channel. Systems that obey Kahn's mathematical model are determinate: the 

history of tokens produced on the communication channels does not depend on the execution order 

[8]. With a proper scheduling policy, it is possible to implement software defined radio process 

networks holding two key properties: 

 Non-termination: understood as an infinite running flow graph process without deadlocks 
situations, and 

 Strictly bounded: the number of data elements buffered on the communication channels 
remains bounded for all possible execution orders.  

 

An analysis of such process networks scheduling was provided in [10]. By adopting GNU Radio's 

signal processing framework, GNSS-SDR bases its software architecture in a well-established design 

and extensively proven implementation.  

 

Software defined receivers can be represented as flow graph of nodes. Each node represents a signal 

processing block, whereas links between nodes represents a flow of data. The concept of a flow 

graph can be viewed as an acyclic directional graph with one or more source blocks (to insert 

https://gnuradio.org)/
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samples into the flow graph), one or more sink blocks (to terminate or export samples from the flow 

graph), and any signal processing blocks in between. The diagram of a processing block (that is, of a 

given node in the flow graph), as implemented by the GNU Radio framework, is shown in Figure 3.1.  

Each block has a completely independent scheduler running in its own execution thread and a 

messaging system for communication with other upstream and downstream blocks. The actual signal 

processing is performed in the work() method. 

 

 

Figure 3.1: Diagram of a signal processing block, as implemented by GNU Radio. Figure from [7]. 

Each block can have an arbitrary number of input and output ports for data and for asynchronous 

message passing with other blocks in the flow graph. In all software applications based on the GNU 

Radio framework, the underlying process scheduler passes items (i.e., units of data) from sources to 

sinks. For each block, the number of items it can [8] process in a single iteration is dependent on how 

much space it has in its output buffer(s) and how many items are available on the input buffer(s). The 

larger that number is, the better in terms of efficiency (since the majority of the processing time is 

taken up with processing samples), but also the larger the latency that will be introduced by that 

block. On the contrary, the smaller the number of items per iteration, the larger the overhead that 

will be introduced by the scheduler.  

 

Thus, there are some constraints and requirements in terms of number of available items in the input 

buffers and in available space in the output buffer in order to make all the processing chain efficient. 

In GNU Radio, each block has a runtime scheduler that dynamically performs all those computations, 

using algorithms that attempt to optimize throughput, implementing a process network scheduling 

that fulfills the requirements described in [10]. Each processing block executes in its own thread.  A 

detailed description of the GNU Radio internal scheduler implementation (memory management, 

requirement computations, and other related algorithms and parameters) can be found in [11], and 

of course in GNU Radio source code (available at https://github.com/gnuradio/gnuradio). 

 

Under this scheme, software-defined signal processing blocks read the available samples in their 

input memory buffer(s), process them as fast as they can, and place the result in the corresponding 

output memory buffer(s), each of them being executed in its own, independent thread. This strategy 

results in a software receiver that always attempts to process signal at the maximum processing 

capacity, since each block in the flow graph runs as fast as the processor, data flow and buffer space 

https://github.com/gnuradio/gnuradio)
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allows, regardless of its input data rate. Achieving real-time is only a matter of executing the 

receiver’s full processing chain in a processing system powerful enough to sustain the required 

processing load, but it does not prevent from executing exactly the same process at a slower pace, 

for example, by reading samples from a file in a less powerful platform. 

 

Figure 3.2: Diagram of a multi-band, multi-system GNSS-SDR flow graph 

Figure 3.2 shows a possible flow graph diagram used in GNSS-SDR. There is a signal source block (a 

dual-band radio-frequency front-end) writing samples in a memory buffer at a given sampling rate; 
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some signal conditioning (possible data type adaptation, filtering, frequency downshifting to 

baseband, and resampling); a set of parallel channels, each one reading form the same upstream 

buffer and targeted to a different satellite; a block in charge of the formation of observables 

collecting the output of each satellite channel after the despreading (and thus in a much slower rate); 

and a signal sink, responsible for computing the position-velocity-time solution from the obtained 

observables and providing outputs in standard formats (such as KML, GeoJSON, RINEX, RTCM and 

NMEA). 

 

The flow graph in Figure 3.2 defines a multi-band, multi-system GNSS receiver. In all cases, each of 

the processing blocks will be executing its own thread, defining a multi-threaded GNSS receiver that 

efficiently exploits task parallelization. 

 

 Signal processing plane 3.1.2.2

The Signal Processing Plane (which design was described in Deliverable D2.2, see [2] Section 3.4.2.2) 

is in charge of defining and implementing all the processing blocks that will form the receiver’s flow 

graph defined in the Control Plane. 

 

In the system developed within AUDITOR, the Processing System of the Zynq device will run exactly 

the same code than in the open source version of GNSS-SDR but the implementation of specific 

functions (described in Section 3.2), which are off-loaded to the FPGA in order to accelerate their 

execution. The ARM – FPGA interface for computation off-loading is described in Section 3.1.4. 

 

The documentation about the available blocks and their configuration parameters are published 

online at http://gnss-sdr.org/docs/sp-blocks/  

 

3.1.3 System control 

 Receiver configuration 3.1.3.1

GNSS-SDR’s configuration mechanism design was described in Deliverable 2.2 (see [2]), Section 

3.4.2.1.1, and in this WP the design has been consolidated, implemented and tested, demonstrating 

its flexibility to accommodate the continuously growing number of receiver’s configuration 

parameters and options. 

 

Configuration allows users to define in an easy way their own custom receiver by specifying the flow 

graph (type of signal source, number of channels, algorithms to be used for each channel and each 

module, strategies for satellite selection, type of output format, etc.). Since it is difficult to foresee 

what future module implementations will be needed in terms of configuration, we used a very simple 

approach that can be extended without a major impact in the code. This can be achieved by simply 

mapping the names of the variables in the processing blocks with the names of the parameters in the 

configuration. 

 

For instance, parameters related to SignalSource should look like this: 

http://gnss-sdr.org/docs/sp-blocks/
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SignalSource.parameter1=value1 

SignalSource.parameter2=value2 

 

The name of these parameters can be anything but one reserved word: implementation. This 

parameter indicates in its value the name of the class that has to be instantiated by the factory for 

that role. For instance, if we want to use the implementation Pass_Through for 

module SignalConditioner, the corresponding line in the configuration file would be: 

 

SignalConditioner.implementation=Pass_Through 

 

Since the configuration is just a set of property names and values without any meaning or syntax, the 

system is very versatile and easily extendable. Adding new properties to the system only implies 

modifications in the classes that will make use of these properties. In addition, the configuration files 

are not checked against any strict syntax so it is always in a correct status (as long as it contains pairs 

of property names and values in INI format. An INI file is an 8-bit text file in which every property has 

a name and a value, in the form name = value. Properties are case-insensitive, and cannot contain 

spacing characters. Semicolons (;) indicate the start of a comment; everything between the 

semicolon and the end of the line is ignored: 

 

; THIS IS A COMMENT 

SignalConditioner.implementation=Pass_Through ; THIS IS ANOTHER COMMENT 

 

In this way, a full GNSS receiver can be uniquely defined in one text file in INI format: 

 

$ gnss-sdr --config_file=/path/to/my_receiver.conf 

 

GNSS-SDR allows the user to define a custom GNSS receiver, including its architecture (number of 

bands, channels per band and targeted signal) and the specific algorithms and parameters for each of 

the processing blocks through a single configuration file (a simple text file in INI format). Thus, each 

configuration file defines a different GNSS receiver. Some examples of such files are available at 

gnss-sdr/conf. 

 

 Startup scripts and status monitoring 3.1.3.2

To be defined in WP6. 

 

3.1.4 PS-PL low speed communications 

The control of the GNSS-SDR acquisition and tracking hardware accelerators and the front-end 

configuration requires a bi-directional low speed communication pipe between the software plane 

and the PL. Next table introduces a summary of the data exchange to and from the software plane 

and the hardware plane: 
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Table 3.1: Data exchange to and from the software plane and the hardware plane 

Data source Data sink Message type Maximum frequency 

GNSS-SDR Acquisition accelerator 

Initialization data: PRN 

code and acquisition 

parameters 

1 Hz. 

Acquisition accelerator GNSS-SDR 

Acquisition result: Code 

delay, Doppler 

frequency, and test 

statistics 

1 Hz. 

GNSS-SDR Tracking accelerator 

Initialization data: PRN 

code and pull-in 

parameters 

1 Hz. 

GNSS-SDR Tracking accelerator 

Tracking loop 

parameters: Code NCO 

and Carrier NCO 

commands 

1 kHz. 

Tracking accelerator GNSS-SDR Correlators output 1 kHz. 

GNSS-SDR 
Front-end hardware 

module 

Initialization 

parameters: Carrier 

frequency, number of 

channels, sampling 

frequency, gain 

parameters 

One-time 

configuration at the 

receiver startup. 

Front-end hardware 

module 
GNSS-SDR 

Front-end status 

feedback 
0.01 Hz. 

 

A suitable communication mechanism, which provides enough bandwidth and low latency with low 

complexity, is the so-called memory mapped registers. Each hardware accelerator publishes a set of 

AXI registers at specific memory addresses as described in Section 3.2. In order to minimize the 

latency and the required computational resources, each accelerator provides an interrupt signal that 

triggers the data gathering from GNSS-SDR. 

 

 User Input-Output (UIO) driver framework 3.1.4.1

Linux provides a standard called UIO (User I/O) framework for developing user-space-based device 

drivers. The UIO framework defines a small kernel-space component that performs two key tasks: 

 Indicate device memory regions to user space. 

 Register for device interrupts and provide interrupt indication to user space. 
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The kernel-space UIO component then exposes the device via a set of sysfs entries like /dev/uioXX. 

The user-space component searches for these entries, reads the device address ranges and maps 

them to user space memory.  

 

The user-space component can perform all device-management tasks including I/O from the device. 

For interrupts however, it needs to perform a blocking read() on the device entry, which results in 

the kernel component putting the user-space application to sleep and waking it up once an interrupt 

is received. 

 

In order to activate the Linux kernel UIO driver, the device tree description for the hardware 

accelerators must contain the generic-uio string. Next device tree DTS entry shows an example of a 

description for a tracking accelerator: 

 

multicorrelator_resampler_S00_AXI_0: multicorrelator_resampler_S00_AXI@43c00000 { 

               compatible = "generic-uio"; 

        interrupt-parent = <&intc>; 

        interrupts = <0 31 4>; 

               reg = <0x43c00000 0x10000>; 

               xlnx,s-start-count = <0x20>; 

          }; 

  

3.1.5 PS-PL high speed communications 

The baseband signal samples flow from the AUDITOR custom front-end ADCs to the hardware 

accelerators is routed directly to the Zynq FPGA fabric, thus, there is no need of any communication 

mechanism in the PS plane. However, for debugging purposes and to support USB-based front-ends, 

such as the Ettus Research Universal Software Radio Peripheral (USRP) family, it is required a high-

speed communication mechanism from PS to PL. 

 

The selected mechanism is based on the Xilinx AXI Direct Memory Access (AXI DMA) IP core (see 

http://www.wiki.xilinx.com/DMA+Drivers+-+Soft+IPs) with a user space DMA driver. 

 

The AXI DMA IP provides high-bandwidth direct memory access between memory and AXI4-Stream-

type target peripherals. Its optional scatter gather capabilities also offload data movement tasks 

from the CPU in processor-based systems. Initialization, status, and management registers are 

accessed through an AXI4-Lite slave interface. 

 

Features Supported 

 

 AXI4 and AXI4-Stream compliant 

 Optional Scatter/Gather (SG) DMA support. When Scatter/gather mode is not selected the IP 

operates in Simple DMA mode. 

http://www.wiki.xilinx.com/DMA+Drivers+-+Soft+IPs
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 Primary AXI4 Memory Map and AXI4-Stream data width support of 32, 64, 128, 256, 512, and 

1024 bits 

 Optional Data Re-Alignment Engine 

 Optional AXI Control and Status Streams 

 Multi-channel mode 

 Support for up to 64-bit Addressing 

 

The user space driver is based on the open source project EZDMA (see  

https://github.com/jeremytrimble/ezdma) Figure 3.3 shows how EZDMA works. The driver publish a 

set of sysfs files to trigger DMA transfers to/from the user space with simple read() and write() 

operations. This is also known as zero-copy operations.  

 

Figure 3.3: EZDMA driver architecture (from [12]). 

In order to activate the EZDMA kernel driver, the device tree description must contain the DMA 

device descriptions and the EZDMA entry. Next device tree DTS subsection shows an example of an 

AXI DMA + EZDMA description: 

 

  axi_dma_0: dma@40400000 { 

   #dma-cells = <1>; 

   compatible = "xlnx,axi-dma-1.00.a"; 

   interrupt-parent = <&intc>; 

   interrupts = <0 29 4 0 30 4>; 

   reg = <0x40400000 0x10000>; 

   xlnx,include-sg ; 

   dma-channel@40400000 { 

    compatible = "xlnx,axi-dma-mm2s-channel"; 

    dma-channels = <0x1>; 

    interrupts = <0 29 4>; 

    xlnx,datawidth = <0x20>; 

https://github.com/jeremytrimble/ezdma
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    xlnx,device-id = <0x0>; 

   }; 

   dma-channel@40400030 { 

    compatible = "xlnx,axi-dma-s2mm-channel"; 

    dma-channels = <0x1>; 

    interrupts = <0 30 4>; 

    xlnx,datawidth = <0x20>; 

    xlnx,device-id = <0x0>; 

   }; 

  }; 

    ezdma0: dmatest@0 { 

 compatible = "ezdma"; 

 dmas = <&axi_dma_0 0 &axi_dma_0 1>; 

 dma-names = "loop_tx", "loop_rx";  

 ezdma,dirs = <2 1>;   // direction of DMA: 1 = RX (dev->cpu), 2 = TX (cpu->dev) 

    }; 

 

3.2 Zynq Processing Logic (PL) 

As shown in [7], current ARM-based platforms are not fast enough for a multiple-constellation, 

multiple-band GNSS receiver configuration working in real time, as required by AUDITOR. Hence, the 

most computational demanding operations are off-loaded to the FPGA device. 

 

This allows a clear interface between free and open source software (that is, GNSS-SDR) and 

proprietary software. The open source version is a fully functional GNSS receiver, that users can 

execute in their own desktop or laptop computer. However, in order to attain real-time in an 

embedded device (specially for multi-band, multi-constellation configurations), users must resort to 

the FPGA off-loading provided by the intellectual property (IP) cores developed within AUDITOR. In 

this way, the whole receiver benefits from the extensive testing and collaborative development of 

GNSS-SDR, while professional users have the possibility to embed the software in small form factor 

devices. 

 

3.2.1 Hardware accelerators 

 Overview 3.2.1.1

The AUDITOR GNSS receiver is based on a Zynq System-on-Chip (SoC). The Zynq SoC contains a two-

core ARM processor and an FPGA together in the same chip. The Zynq is designed to maximize the 

advantages of using an ARM software-based system combined with FPGA-based HW accelerators. All 

together the system can obtain high performance in terms of signal processing speed while 

minimizing the energy consumption. 

 

The ARM processors run a Linux operating system and could in principle execute all the tasks of the 

AUDITOR GNSS receiver. However, the ARM processors cannot deliver real-time performance when 

running the GNSS receiver due to their limited performance. 
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In order to produce a GNSS receiver that can function properly in real time, hardware accelerators 

were implemented for various functionalities of the physical layer.  

 

The hardware accelerators are implemented in VHDL and encapsulated as IP modules. These IP 

modules can be reused and instantiated as needed in the main Zynq design. The IP modules replace 

various functionalities that were earlier implemented in software, which have stringent demands in 

terms of real-time performance. 

 

 Implementation 3.2.1.2

The AUDITOR GNSS receiver performs two types of tasks that require very intensive computations: 

the acquisition process and the tracking multi-correlation process of the physical layer. These tasks 

work at the received sampling rate, whereas the remaining tasks work at the received code rate, 

which is much lower than the sampling frequency.  Therefore, two types of hardware accelerators 

were implemented:  

- Acquisition 

- GPS and Galileo Multicorrelators  

Figure 3.4 shows a block diagram of the main HW components involved in the data flow.  

 

The analog front-end receives data using two frequency bands simultaneously. One of those two 

frequency bands is fixed to the GPS L1/CA, Galileo E1, and GPS SBAS band. The other frequency band 

can be switched either to GPS L2C or Galileo E5A and GPS L5 

 

The buffers compensate for temporary delays caused by the hardware accelerator modules. The 

hardware accelerator modules can process samples faster than the received data rate on average, 

but they might introduce temporary delays due to processing or communication with the ARM 

processors. We call buffer 1 the buffer that stores the signal of the GPS L1/CA, Galileo E1 and GPS 

SBAS band. We call buffer 2 the buffer that stores the signal of the GPS L2C or the signal of the 

Galileo E5A and GPS L5 band.  

 

The Acquisition HW accelerators runs a parallel code phase search Acquisition. It frees the ARM 

processors from this task. The ARM processors configure the Acquisition HW module and read the 

Acquisition results using the low speed communication bus (see section 3.1.4) and the hardware 

interrupts. 

 

The GPS Multicorrelator hardware accelerators and the Galileo Multicorrelator hardware 

accelerators perform the Doppler wipeoff and the multi-correlation between the received signal and 

a local copy of the GNSS code. They free the ARM processors from this task. The ARM processors 

configure the Multicorrelator modules and read the multi-correlator results using the low speed 

communication bus (see section 3.1.4) and the hardware interrupts. 
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The Acquisition HW accelerators and the Multicorrelator HW accelerators keep track of all the 

samples that are received from the analog front-end in order to keep the synchronization between 

them. The acquisition returns a sample pointer that is then used by the Multicorrelator HW 

accelerators to process the received signal at the right synchronization point. 

 

Figure 3.4: Block Diagram of the data flow inside the HW part of the receiver 

 

The Acquisition HW accelerator can be used to run the acquisition with both GPS and Galileo signals. 

It has two input high speed ports, such that it can be connected to both Buffer 1 and Buffer 2.  
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The GPS Multicorrelator hardware accelerators can only be used for GPS signals. They have one 

input high speed port. 

 

The Galileo Multicorrelator hardware accelerators can in principle be used for both GPS and Galileo 

signals. However, they occupy more FPGA resources than the GPS Multicorrelator. Therefore, to save 

space in the FPGA, the GPS signals are tracked using the GPS Multicorrelator and not the Galileo 

Multicorrelator. 

 

When testing without the analog front-end, the DMA is used to transfer samples from the ARM 

processors main memory to the HW accelerators. This is shown in Figure 3.5.  

 

Figure 3.5: Block Diagram of the data flow inside the HW part of the receiver when testing with the 

DMA 

Figure 3.6 shows an example of several hardware accelerator modules instantiated in a Zynq design. 

The main parts of the design are the ARM processors, the DMA, the Buffer, the Multicorrelator 

modules and the Acquisition module. This is an example of a design used for testing. The ARM 

processors use the DMA to send samples stored in a file to the Acquisition and Multicorrelator 

modules using the Buffer. The path DMA -> Buffer -> Acquisition/Multicorrelator hardware 

accelerator modules is connected using the high speed PS-PL communications explained in section 

3.1.5. The DMA itself and the Acquisition/Multicorrelator hardware accelerators are connected to 
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the ARM using the PS-PL low speed communications explained in section 3.1.4. and the hardware 

interrupts. The Acquisition and Multicorrelator accelerator modules are memory mapped to the ARM 

processors using this low speed PS-PL communications bus. The ARM processors control the 

hardware accelerators using these memory mapped registers.  

 

Figure 3.6: Hardware Accelerator Modules 

 Buffers 3.2.1.3

In WP3, the buffer design described in [2] section 3.2.2.1, has been consolidated and implemented. 

As mentioned in section 3.2.1.2 of this document, the buffers are used to compensate for temporary 

delays introduced by the hardware accelerators during acquisition or tracking. The hardware 

accelerators can process samples faster than the received sample rate on average. However 

temporary delays might be introduced due to signal processing calculations, communication 

between the hardware accelerators and the ARM processors, etc. The buffers are dimensioned in 

order to occupy the minimum space in the FPGA while ensuring that no samples are lost during 

operation. 

 

 

 Signal Acquisition 3.2.1.4

In WP3, the Signal Acquisition design described in [2] section 3.2.2.2, has been consolidated and 

implemented. The Acquisition module runs a parallel code phase search acquisition algorithm. The 
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result of the acquisition is an estimation of the synchronization point in the received signal and an 

estimation of the Doppler frequency. The Doppler sweep is done in the software, this is: the software 

runs the hardware Acquisition accelerator for each Doppler frequency candidate. 

 

The Acquisition module has two input high speed communication ports (AXI-Stream ports) used to 

connect the Acquisition hardware with the corresponding buffer.  

 

Figure 3.7 shows the aspect of the Acquisition IP block. The debugout port is an optional port for 

debugging which will not be used in the final version. 

 

 

Figure 3.7: Acquisition Hardware Accelerator 

The input/output ports shown in Figure 3.7 are detailed in Table 3.2. 

Table 3.2: Acquisition Hardware Accelerator ports 

Port Input/Output Explanation 

S_AXI Input AXI port (low speed communications). This port is used to 

connect the Acquisition hardware accelerator to the ARM 

processors. 

S00_AXIS Input AXI-Stream port 1 (high speed communications port 1). This 

port is to be used to connect the Acquisition hardware 

accelerator to Buffer 1, see section 3.2.1.1). 

S01_AXIS Input AXI-Stream port 2 (high speed communications port 2). This 

port is to be used to connect the Acquisition hardware 
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accelerator to Buffer 2, see section 3.2.1.1). 

S_AXIS_ACLK Input Digital clock of the AXI-stream buses 

S_AXI_ARESETN Input Reset of the AXI bus (also used as main reset for this module) 

CLK_PROC Input Clock for the processing logic: by default the module has 

separate clocks for the AXI bus (not shown by default), the AXI-

Stream bus (shown above) and the processing logic. The reason 

why there are three separate clocks is to allow for the possibility 

of using a higher frequency clock for part of the processing 

logic. By default the module is internally designed such that all 

three clocks are the same.  Raising the clock of the processing 

logic would require a modification in the VHDL code. 

Introut Output Output interrupt line. The interrupt is asserted when the 

acquisition process is finished. 

 Signal tracking 3.2.1.5

In WP3, the Signal Tracking design described in [2] section 3.2.2.3 has been consolidated and 

implemented. There are two Multicorrelator HW accelerator modules the GPS Multicorrelator 

module and the Galileo Multicorrelator module. 

 

As mentioned in section 3.2.1.2, the Galileo Multicorrelator hardware accelerators can in principle be 

used for both GPS and Galileo signals. However, they occupy more FPGA resources than the GPS 

Multicorrelator. Therefore, to save space in the FPGA, the GPS signals are tracked using the GPS 

Multicorrelator and not the Galileo Multicorrelator. 

 

 GPS Multicorrelator 3.2.1.6

The GPS Multicorrelator module runs a Doppler wipe-off and a multicorrelation between the 

received signal and a local copy of the GPS code. 

 

Figure 3.8 shows the aspect of the GPS Multicorrelator IP block. The debugout ports is an optional 

port for debugging which will not be used in the final version. 
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Figure 3.8: GPS Multicorrelator HW accelerator 

The input/output ports shown in Figure 3.8 are detailed in Table 3.3. 

Table 3.3: GPS Multicorrelator Accelerator ports 

Port Input/Output Explanation 

S_AXI Input AXI port (low speed communications). This port is used to 

connect the Acquisition hardware accelerator to the ARM 

processors. 

S_AXIS Input AXI-Stream port (high speed communications). This port is to 

be used to connect the Acquisition hardware accelerator to 

Buffer 1 or Buffer 2, see section 3.2.1.1). 

S_AXI_ACLK Input Digital clock of the AXI bus 

S_AXI_ARESETN Input Reset of the AXI bus (also used as main reset for this module) 

S_AXIS_ACLK Input Digital clock of the AXI-stream bus 

S_AXIS_ARESETN Input Reset of the AXI Stream bus 

CLK_PROC Output Clock for the processing logic: by default the module has 

separate clocks for the AXI bus (not shown by default), the 

AXI-Stream bus (shown above) and the processing logic. The 

reason why there are three separate clocks is to allow for the 

possibility of using a higher frequency clock for part of the 

processing logic. By default the module is internally designed 

such that all three clocks are the same.  Raising the clock of 

the processing logic would require a modification in the VHDL 

code. 

Introut Output Output interrupt line. The interrupt is asserted when the 

acquisition process is finished. 
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 Galileo Multicorrelator 3.2.1.7

The Galileo Multicorrelator module runs a Doppler wipe-off and a multicorrelation between the 

received signal and a local copy of the Galileo code. 

 

The Galileo Multicorrelator HW accelerators are the same as the I/O ports of the GPS Multicorrelator 

HW accelerator (see Figure 3.3).  

 

 

3.3 Summary of indicators status for the software-defined receiver 

In Deliverable 1.3 (see [6]) we identified a set of indicators for the software-defined receiver and 

provided a report on its status at the start of AUDITOR. Below, we reproduce the same table, 

indicating the progress achieved since the beginning of the project. 

 

Table 3.4: GNSS-SDR current status. 

Indicator Requirements Current status 
Status 

 M0 
Status 
M16 

Definition of 
project’s 
geographical 
coordinate frame 
and geodetic datum. 

Position must be 
expressed in an 
adequate coordinate 
reference system and 
geodetic datum. 

The World Geodetic System (WGS84) is a 
standard for use in cartography, geodesy, and 
navigation (including GPS and Galileo). Position 
fixes will be expressed in geographic 
coordinates (latitude and longitude) and height 
above the gravity geoid (i.e., orthometric 
height). 

  

Definition of 
accuracy metrics 
and procedures. 

Definition of metrics for 
2D and 3D positioning. 

 

Detailed definition of 
measurement 
procedures. 

AUDITOR accuracy metrics: 

 for 2D positioning: Distance Root 
Mean Square (DRMS) and the Circular 
Error Probability (CEP), in meters, 
and,  

 for 3D positioning: the Mean Radial 
Spherical Error (MRSE) and the 
Spherical Error Probable (SEP), in 
meters. 

Measurement procedures defined  in 
Deliverable 1.3. 

  

Meet AUDITOR’s 
static positioning 
accuracy 
requirements. 

Not defined. 
Testing software implemented. Experiments to 
be addressed in WP6. 

 

Ongoing 

Meet AUDITOR’s 
dynamic positioning 
accuracy 
requirements. 

Not defined. 
Testing software implemented. Experiments to 
be addressed in WP6. 

 

Ongoing 

24/7 service 24/7 service 
Measurement procedures defined in Section 6 
in Deliverable 1.3. Experiments to be addressed 
in WP6. 

 

Ongoing 

Typical duration of 
usage session 

Targeting > 24 h. 
Measurement procedures defined in Section 6 
in Deliverable 1.3. Experiments to be addressed 
in WP6. 

 

Ongoing 
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Status 

 M0 
Status 
M16 

Acquisition 
sensibility 

Not defined. Measurement procedures defined in Section 6. 
Experiments to be addressed in WP6. 

 

Ongoing 

 

Tracking sensibility 
Not defined. Measurement procedures defined in Section 6. 

Experiments to be addressed in WP6. 
 

Ongoing 

Time to First Fix 

Definition of detailed 
TTFF measurement 
procedures in different 
receiver’s status. 

Cold start TTFF measurement procedures 
defined in Section 6 in Deliverable 1.3. 

  

Warm start TTFF measurement procedures 
defined in Section 6 in Deliverable 1.3. 

  

Hot start TTFF measurement procedures 
defined in Section 6 in Deliverable 1.3. 

  

Reacquisition TBD Measurement procedures defined in Section 6. 
Experiments to be addressed in WP6. 

 

Ongoing 

Number of parallel 
channels that the 
software receiver 
can sustain in real 
time, given the 
targeted GNSS signal 
of each channel and 
the computational 
resources available 
for signal 
processing. 

More than 8 channels 

per GNSS signal in a 

multiband configuration. 

More than 8 channels per GNSS signal in a 

multiband configuration. 
  

Power consumption 
for a given host 
computer and 
computational load 
in terms of number 
of signals and 
channels 
to be processed. 

TBD Not measured 

  

Availability of 
profiling tools for 
identifying 
processing 
bottlenecks and 
measuring 
efficiency. 

Allow for statistical 
profiling tools. 
Allow for CPU profiling 
tools. 
Allow for instrumenting 
profiler tools. 
Statistical execution 
time measurement tool 
available for the 
supported processing 
platforms. 

GNSS-SDR allows for the usage of several 
software profiling tools, see http://gnss-
sdr.org/documentation/how-profile-code for 
some examples. The suggested approach 
consists of using a set of freely available 
profiling tools that use different techniques, in 
the hope of taking advantage of their 
complementary nature and obtain a better 
insight about how the code is performing. 

  

Possibility to either 
use synthetically 
generated 
or real-life 
GNSS signals. 

- Implemented 

  

http://gnss-sdr.org/documentation/how-profile-code
http://gnss-sdr.org/documentation/how-profile-code
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 M0 
Status 
M16 

Possibility to 
process signals 
either in real time or 
in post-processing 
time (only limited 
by the 
computational 
capacity 
of the host 
machine). 

- 

AUDITOR’s software receiver architecture 
makes use of a thread-per-block strategy and 
GNU Radio‘s task scheduler, which manages a 
flow graph of nodes. Each node represents a 
signal processing block, whereas links between 
nodes represents a flow of data. 
Under this scheme, software-defined signal 
processing blocks read the available samples in 
their input memory buffer(s), process them as 
fast as they can, and place the result in the 
corresponding output memory buffer(s). This 
strategy results in a software receiver that 
always process signal at the maximum 
processing capacity, regardless of its input data 
rate. Achieving real-time is only a matter of 
executing the full receiver’s processing chain in 
a processing system powerful enough to sustain 
the required processing load, but it does not 
prevent from executing exactly the same 
processing at a slower pace, for example by 
reading samples from a file, in a less powerful 
platform. 

  

Possibility to use 
different radio 
frequency 
front-ends. 

- 

AUDITOR’s software receiver configuration 
system allows the selection of UHD and 
OsmoSDR compatible RF front-ends. 
AUDITOR’s front-end still TBD but both 
receiver’s software architecture and 
configuration systems allows for easy addition. 

  

Possibility to define 
custom receiver 
architectures. 

- Implemented 

  

Possibility to easily 
define / interchange 
implementations 
and 
parameters for each 
processing block. 

- 

AUDITOR’s software receiver configuration 
system allows for an unlimited number of block 
implementations and number of parameters for 
each particular implementation.   

Possibility to deploy 
different receiver 
architectures and 
components. 

- Implemented 

  

Possibility to allow 
for 
unit/component/int
egration/system 
testing. 

- Implemented 

  

Possibility to be 
executed in different 
processing 
platforms 
(mainframes, 
personal computers, 
embedded systems, 
etc). 

- 

AUDITOR’s software receiver building system, 
based on CMake, currently supports i386, 
x86_64/amd64, armhf and arm64 processor 
architectures.    

Flexible 
configuration 

The software defined 
receiver must be fully 

AUDITOR’s GNSS software defined receiver 
follows a single-file configuration strategy. 
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 M0 
Status 
M16 

mechanism. configured in a single 
file. 
Configuration system 
must be arbitrarily 
extendable and easy to 
use. 
Allow possibility of 
overriding parameters 
via commandline flags. 
Required 
tools/dependencies 
released under open 
source license. 

Properties are passed around within the 
program using a configuration interface class. 
Classes that need to read configuration 
parameters will receive instances of such 
interface class from where they will fetch the 
values. The name of these parameters can be 
anything but one reserved word: 
implementation. This parameter indicates in its 
value the name of the class that has to be 
instantiated by the processing block factory for 
that role. Since the configuration is just a set of 
property names and values without any 
meaning or syntax, the system is very versatile 
and arbitrarily extendable. Adding new 
properties to the system only implies 
modifications in the classes that will make use 
of these properties. In addition, the 
configuration files are not checked against any 
strict syntax so it is always in a correct status 
(as long as it contains pairs of property names 
and values in the INI format, see 
https://en.wikipedia.org/wiki/INI_file)  
For commandline flags management, 
AUDITOR’s GNSS software defined receiver 
relies on gflags (formerly Google Commandline 
Flags), see https://github.com/gflags/gflags. 
Gflags is the commandline flags library used 
within Google, and differs from other libraries 
in that flag definitions can be scattered around 
the source code, and not just listed in one place 
such as main(). In practice, this means that a 
single source-code file will define and use flags 
that are meaningful to that file. Any application 
that links in that file will get the flags, and the 
gflags library will automatically handle that flag 
appropriately. There is significant gain in 
flexibility, and ease of code reuse, due to this 
technique. Gflags is released under the BSD 3-
clauses license. 

“Operation modes” 
Receiver operable 
automatically. 

GNSS-SDR can be completely configured and 
executed automatically by a shell script. The 
software receiver has also been virtualized in 
form of Docker container.   

GNSS Signals 

Signal acquisition, 
tracking, decoding of the 
navigation message and 
generation of code and 
phase observables. 

GPS L1 C/A 

  

GPS L2C(M) 

  

GPS L5 

 

Ongoing 

Galileo E1b/c 

  

https://en.wikipedia.org/wiki/INI_file
https://github.com/gflags/gflags
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 M0 
Status 
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Galileo E5a 

  

Galileo E5b 

 

Ongoing 

Signal acquisition, 
tracking, and decoding 
of navigation message 

EGNOS 

 

Ongoing 

RF frontend 
drivers 

The GNSS software 
receiver must receive 
data at an adequate 
bandwidth and sampling 
frequency. 

AUDITOR’s RF front-end 

  

USRP family  

  

OsmoSDR-compatible 

  

Input data types for 
raw samples 

AUDITOR’s GNSS 
software defined 
receiver must allow for 
most usual input raw 
sample data types (i.e. 
bit length, integer and 
floating point 
encodings) delivered by 
available GNSS radio-
frequency front-ends’ 
analog to digital 
converters and 
associated software 
drivers. 

AUDITOR’s raw sample data type 

  

Reading samples represented by 2 bits (sign 
and magnitude). 

  

Reading real (IF) samples represented by 1 byte 
(8-bit signed integer) 

  

Reading real (IF) samples represented by 1 
short (16-bit signed integer) 

  

Reading real (IF) samples represented by 1 float 
(32-bit floating point) 

  

Reading I&Q (IF or baseband) interleaved 
samples represented by 1 byte (8-bit signed 
integer) 

  

Reading I&Q (IF or baseband) interleaved 
samples represented by 1 short (16-bit signed 
integer) 

  

Reading complex (baseband) samples 
represented by 1 byte (8-bit signed integer) 
each component. 

  

Reading complex (baseband) samples 
represented by 1 short (16-bit signed integer) 
each component. 
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 M0 
Status 
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Reading complex (baseband)  samples 
represented by 1 float (32-bit floating point) 
each component. 

  

Output formats 

The “output products” of 
the GNSS software 
defined receiver 
(position, observables, 
navigation data) must be 
delivered in (preferably 
open) standards in 
order to maximize 
interoperability with 
other software packages. 

RINEX v2.11 and 3.02 file generation (obs and 
nav).  RINEX (Receiver Independent Exchange 
Format) is an interchange format for raw 
satellite navigation system data, covering 
observables and the information contained in 
the navigation message broadcast by GNSS 
satellites. This allows the user to post-process 
the received data to produce a more accurate 
result (usually with other data unknown to the 
original receiver, such as better models of the 
atmospheric conditions at time of 
measurement). 

  

RTCM SC-104 provides standards that define 
the data structure for differential GNSS 
correction information for a variety of 
differential correction applications. Developed 
by the Radio Technical Commission for 
Maritime Services (RTCM), they have become 
an industry standard for communication of 
correction information. GNSS-SDR implements 
RTCM version 3.2, defined in [RTCM 10403.2]. 

  

NMEA 0183 is a combined electrical and data 
specification for communication between 
marine electronics such as echo sounder, 
sonars, anemometer, gyrocompass, autopilot, 
GPS receivers and many other types of 
instruments. It has been defined by, and is 
controlled by, the U.S. National Marine 
Electronics Association. At the application layer, 
the standard also defines the contents of each 
sentence (message) type, so that all listeners 
can parse messages accurately. Those messages 
can be sent through the serial port (that could 
be for instance a Bluetooth link) and be 
used/displayed by a number of software 
applications such as gpsd, JOSM, OpenCPN, and 
many others (and maybe running on other 
devices). 

  

GeoJSON is a geospatial data interchange format 
based on JavaScript Object Notation (JSON) 
supported by numerous mapping and GIS 
software packages, including OpenLayers, 
Leaflet, MapServer, GeoServer, 
GeoDjango,GDAL, and CartoDB. It is also 
possible to use GeoJSON with PostGIS and 
Mapnik, both of which handle the format via the 
GDAL OGR conversion library. The Google Maps 
Javascript API v3 directly supports the 
integration of GeoJSON data layers, and GitHub 
also supports GeoJSON rendering. Format 
specification freely available at 
http://geojson.org/geojson-spec.html  

  

KML (Keyhole Markup Language) is an XML 
grammar used to encode and transport 
representations of geographic data for display 
in an earth browser. KML is an open standard   

http://www.rtcm.org/overview.php#Standards
http://www.nmea.org/
http://www.nmea.org/
http://www.catb.org/gpsd/
https://josm.openstreetmap.de/
http://opencpn.org/ocpn/
http://openlayers.org/
http://leafletjs.com/
http://www.mapserver.org/
http://geoserver.org/
https://www.djangoproject.com/
http://www.gdal.org/
https://cartodb.com/
http://postgis.net/
http://mapnik.org/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/examples/layer-data-simple
https://github.com/blog/1528-there-s-a-map-for-that
https://github.com/blog/1528-there-s-a-map-for-that
http://geojson.org/geojson-spec.html
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officially named the OpenGIS KML Encoding 
Standard (OGC KML), and it is maintained by 
the Open Geospatial Consortium, Inc. (OGC). 
KML files can be displayed in geobrowsers such 
as Google Earth, Marble, osgEarth, or used with 
the NASA World Wind SDK for Java. Open 
standard freely available at 
http://www.opengeospatial.org/standards/kml  

UNIX-friendly 

The binary file that 
executes the software 
receiver must be 
system-wide installable. 
Configuration files must 
be in plain text format 
and human-readable. 
Executable must accept 
commandline flags. 

Implemented 

  

Source code under a 
version control 
system. 

Available under open 
source license. 
Free public access to the 
source code repository. 

AUDITOR uses Git as a distributed version 
control system and GitHub as the Git server 
hosting service. 
See https://github.com/gnss-sdr/gnss-sdr  
Git is available under the GNU General Public 
License v2. 

  

Automated 
documentation 
system. 

Usable in C++, Python 
and VHDL source code.  
Available under open 
source license, and in all 
supported 
environments. 
Easily maintainable. 

AUDITOR uses Doxygen 
(http://www.stack.nl/~dimitri/doxygen/) the 
de facto standard tool for generating 
documentation from annotated C++ sources, but 
it also supports other programming languages 
such as C, Python, and VHDL. The 
documentation is written within code, and is 
thus relatively easy to keep up to date. Doxygen 
can cross reference documentation and code, so 
that the reader of a document can easily refer to 
the actual code. Doxygen can also visualize the 
relations between the various elements by 
means of include dependency graphs, 
inheritance diagrams, and collaboration 
diagrams, which are all generated 
automatically. Doxygen is highly portable, and 
can generate documentation in HTML and PDF 
formats. 
Available under GNU General Public License v2. 

  

Automated build 
environments.  

Provided by Launchpad 

(https://launchpad.net/)  
  

Availability of 
“debugging modes” 
and tools.  

Provided by CMake. 

  

Static code analysis  
 

Provided by Coverity Scan 

(https://scan.coverity.com/)  
  

Dynamic code 
analysis  

Provided by Valgrind 

(http://valgrind.org/)  
  

https://www.google.com/earth/
https://marble.kde.org/
http://osgearth.org/
http://worldwind.arc.nasa.gov/java/
http://www.opengeospatial.org/standards/kml
https://github.com/gnss-sdr/gnss-sdr
http://www.stack.nl/~dimitri/doxygen/
https://launchpad.net/
https://scan.coverity.com/
http://valgrind.org/
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Definition of a 
source tree 
structure  

Described in the README file at the root of the 

source code tree. 
  

Availability of a 
coding style guide.  

Coding guidelines and conventions can be found 
at: 
http://gnss-sdr.org/coding-style/  

  

Supported 
processor 
architectures  

AUDITOR’s processor architecture 

  

i386 processor architecture supported by GNSS-
SDR v0.0.6 

  

x86_64 / amd64 processor architecture 
supported by GNSS-SDR v0.0.6 

  

armhf processor architecture supported by 
GNSS-SDR v0.0.6 

  

arm64 processor architecture supported by 
GNSS-SDR v0.0.6 

  

Usage of a well-
established 
building tool 

Available for 
all the supported 
processor architectures, 
and under an open 
source license. 

AUDITOR uses CMake (https://cmake.org) as a 
building tool for its GNSS software defined 
receiver. 
Available under BSD 3-Clause license.    

Availability of 
software package 

AUDITOR’s software 
defined receiver should 
be easily built and 
installed, ideally 
requiring one single line 
in the user terminal. 

GNSS-SDR v0.0.6 is currently undergoing the 
acceptance process to be included as a software 
package (“.deb”) in Debian 9 (and possibly 
followed by Ubuntu and others).   

Freely available, 
industry-proven 
software compilers. 

Usable in the processor 
architectures and 
Operating Systems 
described above. 
Available under open 
source license. 

AUDITOR’s software defined receiver can use 
GCC (available under the GNU General Public 
License v3) and LLVM (available under 
University of Illinois/NCSA Open Source 
License)  

  

Available for most 
popular (Unix-
based) 
operating system 
distributions. 

AUDITOR’s software 
defined receiver must be 
compilable and 
executable (including 
the availability of all 
required dependencies 
in a given environment). 

Debian 8 and above (32 and 64 bits) 

  

Ubuntu 14.04 LTS and above (32 and 64 bits) 

  

Linaro 15.03 and above 

  

Apple’s Mac OS X 10.9 and above 

  

http://gnss-sdr.org/coding-style/
https://cmake.org/
http://www.opensource.org/licenses/UoI-NCSA.php
http://www.opensource.org/licenses/UoI-NCSA.php
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Source code 
released under an 
open license.  

GNSS-SDR is released under the GNU General 
Public License v3, as specified in the COPYING 
file at the root of the source code tree (as it is 
standard practice in the discipline). It can be 
checked online at https://github.com/gnss-
sdr/gnss-sdr  

  

Unique identifier for 
source code 
snapshots. 

Every single change in 
the source tree (either 
on the reference 
development branch or 
in any other) must be 
uniquely identified and 
retrievable, keeping an 
annotated history of 
source code evolution. 

Git assigns a 40 character-long identifier to 
every revision (i.e, specific snapshot of the 
status of every single file present in the 
repository), which is the output of the SHA-1 
algorithm applied to a set of information 
required to recreate the full source tree. Hence, 
every single bit change in the source code is 
registered by Git, with the added benefit of 
integrity over the source code identification. 

  

Availability of a 
Digital Object 
Identifier for GNSS-
SDR releases 

Automated and 
persistent DOI 
assignment to GNSS-SDR 
stable releases. 

GNSS-SDR v0.0.9 DOI: 10.5281/zenodo.291371   
Every new release of GNSS-SDR will obtain a 
new DOI. Automated DOI assignment already 
set-up, service freely provided by ZENODO and 
GitHub. 

  

Quasi-linear 
acceleration with 
the number of 
cores/ processors 

 
Demonstrated in [7] 

  

Arbitrarily scalable 
receiver’s software 
architecture. 

 
Implemented. 

  

Arbitrarily scalable 
configuration 
system. 

 See indicator “Flexible configuration 
mechanism.” 

 

 

Logging system 

Possibility to set up 
severity levels and 
verbose modes for 
messages. 
Possibility to set up 
conditional / occasional 
logging. 
Available under open 
source license and for all 
supported platforms 

AUDITOR uses Google Glog, Google’s C++ 
logging system (see 
https://github.com/google/glog). It provides 
simple yet powerful APIs to various log events 
in the program. Messages can be logged by 
severity level, and the users can control logging 
behaviour from the command line, log based on 
conditionals, abort the program with stack trace 
when expected conditions are not met, and 
introduce their own verbose logging levels. 
Available under BSD 3-clause license. 

  

Unit test software 
framework 

Test should be easy to 
write for programmers, 
letting test writers to 
focus on the test content. 
Test should be easy to 
read for programmers. 
Test should be order 
independent. 
Test should be 
deterministic. 
Test should be 
versionable.  
Test should be 
automatic. 
Tests should be 

AUDITOR uses Google Test, Google's C++ test 
framework 
(https://github.com/google/googletest), which 
meets all the required features. 
Available under BSD 3-clause license. 

  

https://github.com/gnss-sdr/gnss-sdr
https://github.com/gnss-sdr/gnss-sdr
http://dx.doi.org/10.5281/zenodo.291371
https://github.com/google/glog
https://github.com/google/googletest


AUDITOR  D3.1 Version 1.0 

 Page 57 (59) 

Indicator Requirements Current status 
Status 

 M0 
Status 
M16 

independent and 
repeatable. 
Tests should be well 
organized and reflect the 
structure of the tested 
code.  
Tests should be portable 
and reusable. 
When tests fail, they 
should provide as much 
information about the 
problem as possible.  
Tests should be fast (less 
than 5-10 minutes) to 
execute. 
Testing framework 
available under open 
source license, and in all 
the supported 
environments. 

Public source code 
repository 

 Freely accessible. 
 Robust hosting 

service. 
 Management tools. 
 Bug tracking 

system. 
 Allowing automated 

building and other 
hooks on new code 
changes. 

Available at 

https://github.com/gnss-sdr/gnss-sdr.git  
  

Communication 
channels 

Public mailing list Public mailing list 

  

Documentation for 
users 

Howtos, tutorials. 
Documentation is a 
never-ending process 
that continually gets 
feedback from users. 

Available at http://gnss-sdr.org/docs/  

  

Documentation for 
developers 

Identification of a 
source-code based 
automated 
documentation tool. 
Documentation is a 
never-ending process 
that continually gets 
feedback from users. 

AUDITOR uses Doxygen as the automated 
source code documentation tool. 
Doxygen is free software, released under the 
terms of the GNU General Public License. In-
code documentation, presented in an ordered 
manner and generated automatically, helps to 
keep an updated version of the source code 
manual.   

  

  

https://github.com/gnss-sdr/gnss-sdr.git
http://gnss-sdr.org/docs/
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4. Conclusion 

This deliverable details the design and implementation internals of AUDITOR’s GNSS receiver. The 

hardware and software elements of the two main components of the receiver, based on D2.2 [2], 

have been defined. The elements devoted to the implementation and communication of the 

iBOGART model are detailed in a parallel deliverable also due for submissions in M16, D4.2 [4] and 

D5.2 [3]. 

 

The development of the RF Front-End (FE) required the design, implementation and validation of a 

custom RF board with two custom RF chains and additional controlling firmware. The proposed 

design, as defined in the D2.2 specification, receives simultaneously two different bands one fixed 

E1/L1 and one configurable L2 or E5a/L5.  

Several issues related to EMI, clock generation/distribution and optimization of the chains gains have 

been identified and solved during the validation phase of the first version, v1.0. These issues and the 

adaptation of the FE to a more convenient form-factor compatible with the high performance ZC706 

eval board has motivated the design of a new version, v2.0. This new version is currently being 

manufactured and its design and layouts modifications should provide a more robust FE to EMI, with 

clock quality improvements and better overall performance in terms of power and spurious signal 

rejection. 

 

The development of the Digital Processing Platform required the design, implementation and 

validation of multiple complex software elements. This platform is based on a commercial available 

System-on-Chip (Zynq) that provides multiple ARM cores and a FPGA processor.  

The GNSS-SDR module is one of the key elements that are part of the software receiver. This open-

source project, maintained by CTTC partners, provides the architecture and core blocks to implement 

a software GNSS receiver that tackles the challenges of concurrency, efficiency, performance, 

portability, real-time/post-processing and extendibility. In order to accomplish this, the design 

decouples receiver’s internal control and signal processing, while providing a flexible configuration 

system that allows for the required flexibility to implement different processing approaches. 

A key feature of the AUDITOR software receiver is the implementation of several IP modules in VHDL 

language to allow the real-time efficient processing of multiple Galileo and GPS signals in an 

embedded platform. These high optimized modules provide a buffering, acquisition and tracking of 

multiple Galileo/GPS signals.  

The summary of the indicators status introduced in D2.2 has been updated showing clearly the 

advance in the implementation of the required functionalities.  

 

The AUDITOR GNSS receiver has recently started the integration activities where the full RF FE and 

software receiver are being validated. The objective is to complete the implementation of the full 

system showed in Figure 1.1, which includes the iBOGART model and network software based on 

embed and cloud services to provide high level agriculture tools and services. 
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