

AUDITOR – GA 687367

Advanced Multi-Constellation EGNSS Augmentation and Monitoring Network and its

Application in Precision Agriculture

D3.1 Version 1.0

GNSS receiver design and implementation

Contractual Date of Delivery: M16 (Apr, 2017)

Actual Date of Delivery: 28.04.2017

Editor: Jacobo Dominguez (ACORDE)

Author(s): Esther López, Jacobo Domínguez, David Abia, José Manuel Sánchez

(ACORDE); Carles Fernandez-Prades, Marc Majoral, Javier Arribas

(CTTC); Alberto García Rigo, Manuel Hernández-Pajares (UPC);

Work package: WP3 – GNSS receiver module

Security: CO

Nature: R

Version: 1.0

Total number of pages: 59

Abstract:

This document contains the GNSS receiver design and implementation that is based on the on

the previous “D2.1 Architecture definition” and “D2.2 Subsystem specification”. The GNSS

receiver is composed mainly of two hardware elements a custom multiband/multisystem RF

Front-End and a commercial ARM/FPGA processing platform. The configurable RF front-end

and the integration of multiple custom software/firmware components in the ARM/FPGA

platform provide a flexible and high performance open GNSS receiver implementation. The RF

front end supports Galileo/GPS bands (E1/L1, L2 o E5a/L5).

AUDITOR D3.1 Version 1.0

 Page 2 (59)

Document Control

Version Details of Change Author Approved Date

0.1 First version of the document JD 03/04/2017

0.2 Updated contents and TOC reorganization JD 12/04/2017

0.3 Updated with design issues JD 21/04/2017

0.4 Merged ACORDE/CTTC contributions added

conclusions

JD 25/04/2017

0.5 Some minor corrections and reordering CF 28/04/2017

1.0 Consolidated Version JD 28/04/2017

AUDITOR D3.1 Version 1.0

 Page 3 (59)

Executive Summary

This document summarizes the GNSS receiver design already proposed in D2.1 Architecture

Definition and extended in D2.2 Subsystem specification.

The GNSS receiver is composed of two hardware elements:

 A custom RF front-end designed and implemented within AUDITOR

 A signal processing platform based on the Zynq-7000 All Programmable SoC that includes a

FPGA/ARM configuration with custom accelerators and the gnss-sdr-org modules.

The RF front-end provides two simultaneous receiver chains for Galileo/GPS bands. The first receiver

chain is fixed to the E1/L1 band. The second receiver chain can be configured either in the E5a/L5

band or the L2. The RF front-end provides the sampled I/Q signals for these bands to the processing

platform.

The processing platforms embed custom accelerators, implemented within WP3, that provide a set

of high performance and efficient pre-processing functions. Those accelerators are embedded in the

FPGA and contain multiple correlators and FIFO modules that allows the real-time processing of

multiple GNSS signals. Moreover the ARM contains the receiver monitoring and control modules and

the high level GNSS related functions that are based on the open source project GNSS-SDR.org. This

open source project is maintained by CTTC and enables Linux distributions to implement a GNSS

software receiver.

In this document the design and implementation of both components is detailed as well as the main

internal and external monitoring and control interfaces. The GNSS receiver implements an innovative

ionospheric model that is supported by data streams from cloud computing platforms both

developed within WP4/WP5.

AUDITOR D3.1 Version 1.0

 Page 4 (59)

Authors

Partner Name e-mail

ACORDE Esther López esther.lopez@acorde.com

 Jacobo Domínguez jacobo.dominguez@acorde.com

 David Abia david.abia@acorde.com

 José Manuel Sánchez josemanuel.sanchez@acorde.com

CTTC Carles Fernández-Prades carles.fernandez@cttc.es

 Marc Majoral marc.majoral@cttc.es

 Javier Arribas javier.arribas@cttc.es

UPC Alberto García Rigo alberto.garcia.rigo@upc.edu

 Manuel Hernández-Pajares manuel.hernandez@upc.edu

mailto:jacobo.dominguez@acorde.com
mailto:david.abia@acorde.com
mailto:josemanuel.sanchez@acorde.com
mailto:carles.fernandez@cttc.es
mailto:marc.majoral@cttc.es
mailto:javier.arribas@cttc.es
mailto:alberto.garcia.rigo@upc.edu
mailto:manuel.hernandez@upc.edu

AUDITOR D3.1 Version 1.0

 Page 5 (59)

Table of Contents

Document Control .. 2

Executive Summary .. 3

Authors ... 4

Table of Contents ... 5

List of tables ... 6

List of Figures .. 6

List of Acronyms and Abbreviations ... 8

1. Introduction ...10

2. GNSS RF Front-End Module (ACORDE) ..11

2.1 RF Front-End v1.0 ..13

2.1.1 Design ..15

 Interfaces ..15 2.1.1.1

2.1.2 Implementation ...16

 Tests ..19 2.1.2.1

2.2 RF Front-end v2.0 ..21

2.2.1 Design ..22

 Interfaces ..23 2.2.1.1

2.2.2 Implementation ...23

2.2.3 Tests ..25

2.3 Firmware ...25

2.3.1 Message formats ...25

2.4 Summary of RF testing ..27

3. Digital Processing Platform (CTTC) ..29

3.1 Zynq Processing System (PS) ...29

3.1.1 Development cycle ..29

3.1.2 GNSS-SDR module ...31

 Control plane ..32 3.1.2.1

 Signal processing plane ...35 3.1.2.2

3.1.3 System control ..35

 Receiver configuration ..35 3.1.3.1

 Startup scripts and status monitoring ..36 3.1.3.2

3.1.4 PS-PL low speed communications ...36

 User Input-Output (UIO) driver framework ..37 3.1.4.1

3.1.5 PS-PL high speed communications ..38

3.2 Zynq Processing Logic (PL) ..40

3.2.1 Hardware accelerators ..40

AUDITOR D3.1 Version 1.0

 Page 6 (59)

 Overview ...40 3.2.1.1

 Implementation ..41 3.2.1.2

 Buffers ...44 3.2.1.3

 Signal Acquisition ..44 3.2.1.4

 Signal tracking ...46 3.2.1.5

 GPS Multicorrelator ..46 3.2.1.6

 Galileo Multicorrelator ...48 3.2.1.7

3.3 Summary of indicators status for the software-defined receiver ..48

4. Conclusion ..58

5. References ...59

List of tables

Table 2.1: Front End Specification ..12

Table 2.2: Electrical specifications..13

Table 2.3: Serial and power connector ..16

Table 2.4: 20+20 pins USER connector ...16

Table 2.5: Serial messages example ...26

Table 2.6: list of serial messages. ...27

Table 2.7: GNSS RF chain tests ...27

Table 3.1: Data exchange to and from the software plane and the hardware plane37

Table 3.2: Acquisition Hardware Accelerator ports ...45

Table 3.3: GPS Multicorrelator Accelerator ports ..47

Table 3.4: GNSS-SDR current status. ..48

List of Figures

Figure 1.1: System Architecture ...10

Figure 2.1: ZC706 Evaluation Kit top layer layout ..11

Figure 2.2: ACORDE’s previous E1/E6 Front-End v2 (size 10 x 8 cm2) ...14

Figure 2.3: RF FE v1.0 design ..15

Figure 2.4: FE v1.0 top layer layout, (153mm x 104mm) ...17

Figure 2.5: FE v1.0 PCB top layer ..18

Figure 2.6: FE v1.0 external connectors ...18

Figure 2.7: FE v1.0 measurement, testing equipment. ..19

Figure 2.8: FE v1.0 measurement, GPS L1 band single tone, IF at 418 kHz (BW 2.5 MHZ).20

Figure 2.9: FE v1.0 measurement, GPS L2 band single tone, IF at 609 kHz (BW 2.5 MHZ).20

Figure 2.10: FE v1.0 measurement, GPS L5 band single tone, IF at 404 kHz. (BW 12.5 MHz).21

Figure 2.11: OL phase noise measurement. ...21

AUDITOR D3.1 Version 1.0

 Page 7 (59)

Figure 2.12: RF FE v2.0 design ..22

Figure 2.13: FE v2.0 top layer layout, (153mm x 108.9mm+17.9mm) ...24

Figure 2.14: ZC706 connected via FMC-LPC to FE v2.0 layout ...24

Figure 3.1: Diagram of a signal processing block, as implemented by GNU Radio. Figure from

[7]. ..33

Figure 3.2: Diagram of a multi-band, multi-system GNSS-SDR flow graph ..34

Figure 3.3: EZDMA driver architecture (from [12]). ...39

Figure 3.4: Block Diagram of the data flow inside the HW part of the receiver42

Figure 3.5: Block Diagram of the data flow inside the HW part of the receiver when testing with

the DMA ...43

Figure 3.6: Hardware Accelerator Modules ...44

Figure 3.7: Acquisition Hardware Accelerator ...45

Figure 3.8: GPS Multicorrelator HW accelerator..47

AUDITOR D3.1 Version 1.0

 Page 8 (59)

List of Acronyms and Abbreviations

Term Description

ACP Accelerator Coherency Port

ADC Analog-to-Digital Conversion

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

APU Application Processor Unit

ASSP Application Specific Standard Product

AXI Advanced eXtensible Interface

CAN Controller Area Network

CLB Configurable Logic Block

CPU Central Processing Unit

DAP Debug Access Port

DDR Double Data Rate

DevC Device Configuration interface

DMA Direct Memory Access

DMIPS Dhrystone Million Instructions Per Second

DSP Digital Signal Processor

ECC Error Correction Checking

EHCI Enhanced Host Controller Interface

EMI ElectroMagnetic Interference

EMIO Extendable Multiplexed Input / Output

FE Front End

FPGA Field Programmable Gate Array

GIC General interrupt controller

GMII Gigabit Media-Independent Interface

GNSS Global Navigation Satellite System

IF Intermediate Frequency

IOP Input / Output Peripherals

IP Intellectual Property

AUDITOR D3.1 Version 1.0

 Page 9 (59)

Term Description

IRQ Interrupt ReQuest

LPDDR Low Power Double Data Rate

LUT Look-Up Table

MAC Media Access Control

MIO Multiuse Input / Output

MMU Memory Management Unit

OCM On-Chip Memory

OTG On-The-Go

PCAP Processor Configuration Access Port

PL Programmable Logic

PS Processing System

RAM Random Access Memory

RGMII Reduced Gigabit Media-Independent Interface

ROM Read Only Memory

SGMII Serial Gigabit Media-Independent Interface

SoC System-on-Chip

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SWDT System Watch Dog Timer

TTC Triple Timers / Counters

UART Universal Asynchronous Receiver-Transmitter

ULPI UTMI+ Low Pin Interface

UTMI USB 2.0 Transceiver Macrocell Interface

VFPU Vector Floating Point Unit

WDT Watch Dog Timers

AUDITOR D3.1 Version 1.0

 Page 10 (59)

1. Introduction

In a previous deliverable [1] the overall architecture for the AUDITOR system has been presented.

This architecture was further refine in [2]. The architecture introduced [1] and [2] is summarized in

Figure 1.1.

Figure 1.1: System Architecture

This document is focused in the work performed by ACORDE FRONT-END Module (see Figure 1.1

left), CTTC High Accuracy Software Module (see Figure 1.1 bottom-right). The work carried out by

UPC (Network Software) in collaboration with TUM that involves the iBOGART Cloud related to the

innovative ionospheric model and the generation/processing of its data streams is detailed in the

WP5/WP4 deliverables [3] and [4], also submitted in M16 .

The GNSS receiver is composed of two hardware elements depicted in Figure 1.1:

 RF front-end module

 Digital processing platform

This document in the following sections details the design and implementation of both elements

including their custom hardware and main software/firmware modules.

Zynq Processing System (ARM)

Zynq BOARDZynq BOARD

FRONT-END Module
Zynq Processing Logic (FPGA)

High Accuracy Software Module

FRONT-END
Receiver

NETWORK SOFTWARE
AGRICULTURE TOOLS

 AND SERVICES

NMEA

U
SB

 t
o

 C
A

N
B

u
s

C
o

n
ve

rt
er ISOBUS GEO

FRAMES

WP3 (ACORDE)

WP5 (UPC) WP7 (DRAXIS)

WP3 (ACORDE/CTTC)

Control

A
X

I I
n

te
rf

ac
e

A
X

I P
er

ip
h

er
alSignal

Processing

GNSS-SDR
Original
Modules

- GNSS filter
- RT GNSS data
- GNSS prefit

GNSS Comm. (FTP/NTRIP)

IS
O

B
U

S
C

LI
EN

T
(B

U
IL

D
 G

EO
 F

R
A

M
ES

)Tools & Services Comm.

data

Services Support Module:
- Data Analysis Service
- Variable Rate Application
- Android App

Front-End Config
Interface

A
X

I D
ri

ve
r

U
A

R
T/

U
SB

/E
th

er
n

et
/S

P
I

User Interface

UserUser

RINEX/RTCM3

Control &
User

Interface
Module

Front-End
Driver

USB 3G UMTS
DONGLE

USB 3G UMTS
DONGLE

iBogart
Cloud

iBogart
Cloud

DRAXIS
Cloud Services:

Data Analysis | Variable Rate

DRAXIS
Cloud Services:

Data Analysis | Variable Rate

Android AppAndroid App

iBOGART-NET
CLIENT PVT SOLVER

Power
Module

Ch.Ch.Ch.Ch.

GNSS Single-Band
Antennas

GNSS Single-Band
Antennas

A
d

ap
te

r

è Buffers è

AUDITOR D3.1 Version 1.0

 Page 11 (59)

2. GNSS RF Front-End Module (ACORDE)

The RF FE down converts the GALILEO and GPS bands L1/E1, L2 or L5/E5a to a low intermediate

frequency and provides the digitalized I/Q stream. It is composed of two independent RF channels.

The first channel receives the E1/L1 band and down converts it to IF in a single step. The configurable

channel, either for the L2 or E5a/L5 bands, includes a similar schema but adding a twostep

downconverter. The fixed and one of the configurable bands can operate simultaneously. The

configurable band can only operate L2 or E5a/L5 as these bands share parts of the configurable

receiver RF chain.

One critical element of the RF FE is the clock generation and distribution. All the clock signals need

to be phase-synchronized; therefore they are generated from a single low noise reference oscillator.

This reference signal is pre-scaled and distributed to the mixers/downconverters and ADC in order to

extend this synchronization to the digital generation of the I/Q samples.

The RF FE embeds also its monitoring and control logic that can be interfaced via a standard serial

port and allows enable/disable RF elements and configuring the down conversion and acquisition

parameters of both RF chains.

Two versions of the RF front-end (FE) were designed, v1.0 and v2.0. The specifications used as

reference for the design were defined in collaboration with other partners in [2] Section 2. The first

version (v1.0) is focused on the validation of the RF design. This preliminary functional version allows

an early assessment within the digital platform. The second version (v2.0) rationale is to improve the

RF performance mitigating the effects of electromagnetic interference (EMI) and the redesign of the

clock distribution to optimize the synchronization characteristic. This second version was also resized

taking into account the form factor of the proposed high performance digital platform module in [2],

the Zynq ZC706 Evaluation Kit shown in Figure 2.1, which provides extension with external modules

via FMC connectors.

Figure 2.1: ZC706 Evaluation Kit top layer layout

The main parameters of the FE specification were defined in [2] and have been included here in

Table 2.1 for convenience. An additional column “Implementation Comments” to extend the initial

specification with the implementation results of both v1.0 and v2 has been added.

AUDITOR D3.1 Version 1.0

 Page 12 (59)

Table 2.1: Front End Specification

Channel Implementation Comments

Channel 1 (fixed) L1/E1 yes Yes, in FE v1.0 and v2.0

Channel 2 (configurable) L2C yes Yes, in FE v1.0 and v2.0

L5/E5a yes

Frequency bandwidth Implementation Comments

Sampling frequency (in
MHz)1

L1/E1 ~4 MHz + 2xIF Configurable IF filter
26MHz/5=5.2MHz

L2C ~4 MHz + 2xIF Sampled at:
- 26MHz/5=5.2MHz
- 26MHz/4=6.5MHz

L5/E5a ~25 MHz + 2xIF Sampled at 26/1=26MHz

 Option a: L1/E1
and L2C

~4 MHz + 2xIF Sampled at 26MHz/5=5.2MHz

 Option b: L1/E1
and L5/E5a

~25 MHz + 2xIF Sampled at 26/1=26MHz

Bits per sample Implementation Comments

Each channel will generate 8 bits I + 8 bits Q in 2's
complement.

Yes, in FE v1.0 and v2.0

The adapter module in the Zynq will be in charge of reading
these inputs and converting them to baseband.

Tested in v1.0, implemented
now by CTTC.

Intermediate Frequency Implementation Comments

Depending on the band and architecture, Zero-IF may not be
achieved. Different IF frequencies (from several kHz to a few
MHz) would be used instead. Sampling frequency would
higher than defined to cope with the IF

IF

L1/E1 Up to 1 MHz L1 IF 418kHz

L2C Up to 1 MHz L2 IF 609kHz

L5/E5a Up to 1 MHz L5 IF 404kHz

AGC Implementation Comments

 The gain provided by the AGC needs to be known in
the receiver side (can be at low rate, using SPI or I2C).

 Possibility to fix that gain by software (required by
some test procedures).

Configurable amplifier stages
via serial port 0dB-69dB

Reference oscillator Implementation Comments

Accuracy <= 0.5ppm <0.2ppm

External oscillator
option YES (SMA female connector)

Added in RF FE v2.0

Antenna input Implementation Comments

Connector type SMA female Yes, in FE v1.0 and v2.0

Impedance 50 ohms Yes, in FE v1.0 and v2.0

On-board DC Bias-T (for
active GNSS antenna)

YES (5v DC output is required to
power the GNSS antenna LNA)

DC power for external active
antennas reduced to 3.3V

Signals Summary Implementation Comments

CH1 DATA In-phase component (real part) 8 Yes, in FE v1.0 and v2.0

CH1 DATA Quadrature component 8 Yes, in FE v1.0 and v2.0

1
 Exact value depends on local oscillator configuration and internal crystal parameters, a configurable sampling frequency of

6.25/12.5/25 Msps will be available for all channels to assess different data rates capabilities.

AUDITOR D3.1 Version 1.0

 Page 13 (59)

(imaginary part)

CH2 DATA In-phase component (real part) 8 Yes, in FE v1.0 and v2.0

CH2 DATA Quadrature component
(imaginary part)

8 Yes, in FE v1.0 and v2.0

Sample CLOCK 1 Yes, in FE v1.0 and v2.0

VCC 1 Yes, in FE v1.0 and v2.0

GND 1 Yes, in FE v1.0 and v2.0

As it can be seen in the previous Table 2.2, all the specification have been achieved or improved and

more configurable options are included in terms of IF selection or sampling bandwidth.

In terms of the electrical specification for both designed FE their key parameters are summarized in

Table 2.2.

Table 2.2: Electrical specifications

Parameter Conditions Min. Typ. Max. Units

POWER SUPPLY

VCC Supply voltage operation
5 (v1.0)

12 (v2.0)
 V

ICC Current consumption 500 mA
DIGITAL INTERFACE

Digital Logic-High All pins 2.3 V
Digital Logic-Low All pins 1 V

OUTPUT CLOCK

CLK_OUTFREQUENCY System clock frequency 4.25 6.5 26 MHz
RF INTERFACE

ZIN Input impedance 50 Ω
NF Front-End Noise Figure 3 dB
VANT Active antenna supply voltage 3.3 V
IANT Antenna supply current 20 mA

The main difference between both FE v1.0 and FE v2.0 in terms of electrical characteristic is the

increase of the supply voltage to 12V. This voltage supply level is the standard value for Zynq boards

(MicroZed, ZedBoard…) and is also commonly one of the main power supplies in ground vehicles.

2.1 RF Front-End v1.0

The design and implementation of the first prototype was based on ACORDE previous experience

with earlier E1/E6 front-end designs, as the one presented in [5] and shown here in Figure 2.2.

AUDITOR D3.1 Version 1.0

 Page 14 (59)

Figure 2.2: ACORDE’s previous E1/E6 Front-End v2 (size 10 x 8 cm2)

The more challenging elements in AUDITOR design are the integration of multiple bands and the

correct synchronization of the digital sampling clock and RF reference oscillator:

 Reference clock:

o Distribution required either square or sin signals depending on the component

RF/digital nature.

o Voltage must be carefully distributed to feed modules with different voltage levels

and/or DC terms.

o Squared digital signals introduced several harmonics that could potentially interfere

with other digital/RF modules.

 Configurable Downconverter:

o Full input dynamic power need to be provided in order to work in optimal conversion

conditions.

o Must minimize the mix with unwanted internal or external frequencies.

o Inductions and capacitance effects need to be minimized on all inputs/outputs to

reduce the noise and possible spurious frequencies.

o Shall provide enough configuration range to cover both L2 and E5a/L5 bands.

 Fixed Downconverter:

o The optimal input power need to be provided also taking into account its internal

configuration options that allows setting different gain factors.

o Exact configuration of its internal parameters is needed but datasheet information is

not full documented. This requires to perform additional standalone measurements

to assess its performance with different internal configurations.

o AGC module needs to be built externally to the downconverter to take into account

all the external LNAs and provide the optimal dynamic range for both

downconverters and finally the output ADC.

AUDITOR D3.1 Version 1.0

 Page 15 (59)

2.1.1 Design

The initial design and specification identified in [2], was refined to the design shown in Figure 2.3.

Figure 2.3: RF FE v1.0 design

This design follows closely the specification of [2] but introduces two different RF chains for the L2

and E5a/L5 bands that shared the same digital control & monitor logic. An important part of the

design is the clock generation module that from a single reference crystal creates all the reference

oscillators and digital clocks signals to distribute to the downconverters and ADCs.

The two antennas connectors simplify the initial tests with independently single-band antennas. The

next FE version proposes one multiband antenna instead that are more widely commercialized and

provide up to three bands reception in a single module.

The fixed and configurable band uses a similar output dowconverter (MAX2769) and ADC stage in

order to simplify the overall design and provide similar performance for all bands. In this way, the

configurable band requires and additional downconversion stage to adapt, either the input L2 or the

E5a/L5 band to the final dowconverter band that is centered in all cases at L1.

 Interfaces 2.1.1.1

Four external interfaces are included in the design:

• Power connector: power supply.

• Serial connector: UART0 of the embed control microcontroller.

• JTAG connector: for programming and debugging the control logic.

• User connector: 20+20pin custom connector for data out and external control.

The serial connector provides a basic debug interface while the power connector is the main energy

source of the board provided from a Zynq compatible board. The Table 2.3 summarizes the pin-out

for both connectors.

FRONT-END MODULE

FRONT-END
Receiver

FRONT-END
Receiver

GNSS E1/L1
antenna

GNSS E1/L1
antenna

LNA
Filter

Downconverter

Fixed E1/L1 band

2x 8-bit ADC

AGC

Control&Clk

Control (shared)

Microcontroller
Monitor & Control:
- Gain Control
- Frequency Bands
- Sampling

2x 8-bit ADC

AGC
LNA

Filter
L2

LNA

Configurable
Downcoverter

Control

Configurable E5a/L5 or L2 bands

LNA Filter E1/L1

Control&Clk

Clock Generation

Control

Control

Control&Clk

LNA
Filter

Downconverter

16 bit
I/Q samples (E1/L1)

16 bit
I/Q samples (E5a/L5)

M&C interface (UART)

RF “Clk”
Distribution

Digital Clk
Distribution

Ref
Oscillator

Control&Clk
Control&Clk

Buffering
Divider

LNA
Filter

E5a/L5
LNA

GNSS L2
antenna

GNSS L2
antenna

GNSS E5a/L5
antenna

GNSS E5a/L5
antenna

AUDITOR D3.1 Version 1.0

 Page 16 (59)

Table 2.3: Serial and power connector

Serial debug connector

Pin Description

1 GND

2 UART RX (3.3V)

3 UART TX (3.3V)

4 aux

Power connector

Pin Description

1 +5V

2 GND

3 GND

4 +12V (do not connect)

The user connector is the main data interfaces to the digital processing platform detailed in section

3. Table 2.4 lists with different colors all the pins in the 20+20 pins USER connector that is mainly

composed of I/Q data bits for both channels, the reference clock and the monitoring & control serial

port.

Table 2.4: 20+20 pins USER connector

Pin Description
Direction

Pin
Descriptio

n

Direction

1 I7 (E1) Out 2 I6 (E1) Out

3 I5 (E1) Out 4 I4 (E1) Out

5 I3 (E1) Out 6 I2 (E1) Out

7 I1 (E1) Out 8 I0 (E1) Out

9 Q0 (E1) Out 10 Q1 (E1) Out

11 Q2 (E1) Out 12 Q3 (E1) Out

13 Q4 (E1) Out 14 Q5 (E1) Out

15 Q6 (E1) Out 16 Q7 (E1) Out

17 GND N/A 18 UART RX In

19
Do not

connect

N/A
20 UART TX

Out

21 CLOCK Out 22 NC N/A

23 NC N/A 24 GND N/A

25 I7 (E6) Out 26 I6 (E6) Out

27 I5 (E6) Out 28 I4 (E6) Out

29 I3 (E6) Out 30 I2 (E6) Out

31 I1 (E6) Out 32 I0 (E6) Out

33 Q0 (E6) Out 34 Q1 (E6) Out

35 Q2 (E6) Out 36 Q3 (E6) Out

37 Q4 (E6) Out 38 Q5 (E6) Out

39 Q6 (E6) Out 40 Q7 (E6) Out

Where the I/Q samples are expressed in 2’s complement. All of these pins are 3.3v digital signals

except the clock signal that is an analog sine signal.

2.1.2 Implementation

The layout for the designed FE was implemented in a four layer schema that includes two signal

planes. The designed layout is shown in Figure 2.4.

AUDITOR D3.1 Version 1.0

 Page 17 (59)

Figure 2.4: FE v1.0 top layer layout, (153mm x 104mm)

The configurable L2 or E5a/L5 RF chain can be identified on the left with its main RF parts covered by

a large RF shield. Two different antenna connectors were used in order to add more flexibility,

simplify the input stage and better isolated both channels as introduced in section 2.1.1.

On the lower-right area the fixed E1/L1 chain, that is simpler than the configurable chain, is shown

also including its shielding and antenna connector.

The center-right of the PCB is dedicated to the clock generation and the embedded microcontroller

that monitors and controls all the RF elements and provides the serial external interfaces via de User

Connector.

Several testing points and led indicators are located on the upper-left to ease the testing and

validation procedures.

On the upper-right several regulators define the core components that implement the power

networks to provide the 5V supply voltage.

The designed layout was manufactured and the main components mounted as show in Figure 2.5.

Configurable

L2 or E5a/L5

Control & Clk

POWER

E
x

te
rn

a
l

C
o

n
n

ec
to

rs

TESTING POINTS

Fixed

E1/L1

AUDITOR D3.1 Version 1.0

 Page 18 (59)

Figure 2.5: FE v1.0 PCB top layer

The main external connectors of this PCB located on the right side (excluding the antenna

connectors) are as show in Figure 2.6:

 Power connector labelled as P1.

 Serial connector labelled as P3.

 JTAG connector labelled as J1.

 User connector 20x20 pint out.

Figure 2.6: FE v1.0 external connectors

This PCB was tested in laboratory using a wide range of RF equipment, the main test performs and its

results are summarized in 2.1.2.1.

Several issues were identified during the laboratory tests that required the redesign of the clock

generation/distribution section and the improvement of resilience to EMI. The clock issues could be

solved in the current PCB by carefully bypassing and replacing some digital components, while the

EMI was reduced by additional external shields and improving the grounding of the main RF

components. Theses fixes and the modification of the form factor of the PCB were the main design

parameters to drive the design and implementation of the FE v2.0 detailed in section 2.2.

AUDITOR D3.1 Version 1.0

 Page 19 (59)

 Tests 2.1.2.1

In this section snapshots of some measurements performed in the RF laboratory are summarized. For

each measurement its rationale, the main inputs/outputs and its results are listed with photos of

the different equipment involved.

Testing equipment setup:

 Measurement rationale: check quality of the desired band that will be sampled at L2.

 Input: carrier frequency at L2.

 Output: IF signal of L2 carrier after downconversion.

 Summary: A clean signal can be seen in Figure 2.7 with not relevant spurious near the IF

frequency.

Figure 2.7: FE v1.0 measurement, testing equipment.

GPS L1 band single tone:

 Measurement rationale: check quality of the desired band that will be sampled at L1.

 Input: carrier frequency at L1.

 Output: IF signal of L1 carrier after downconversion.

 Summary: A clean amplified signal and bandwidth curve can be seen in Figure 2.8 without

any other spurious near the IF. The aim is to obtain maximum signal power without spurious

and a bandwidth clean from other signals to be sampled at L1.

AUDITOR D3.1 Version 1.0

 Page 20 (59)

Figure 2.8: FE v1.0 measurement, GPS L1 band single tone, IF at 418 kHz (BW 2.5 MHZ).

GPS L2 band single tone:

 Measurement rationale: check quality of the desired BW that will be sampled at L2.

 Input: carrier frequency at L2.

 Output: IF signal of L2 carrier after downconversion.

 Summary: A clean amplified signal and bandwidth curve can be appreciated in Figure 2.9

without any other spurious near the IF. The main objective of these measurements is to

maximize signal power without increasing the spurious contributions at L2.

Figure 2.9: FE v1.0 measurement, GPS L2 band single tone, IF at 609 kHz (BW 2.5 MHZ).

GPS L5 band single tone:

 Measurement rationale: check quality of the desired band that will be sampled at L5.

 Input: carrier frequency at L5.

 Output: IF signal of L5 carrier after downconversion.

 Summary: A clean amplified signal and bandwidth curve can be appreciated in Figure 2.10

without any other spurious near the IF. The main objective of these measurements is to

maximize signal power without increasing the spurious contributions at L5.

AUDITOR D3.1 Version 1.0

 Page 21 (59)

Figure 2.10: FE v1.0 measurement, GPS L5 band single tone, IF at 404 kHz. (BW 12.5 MHz).

OL phase noise:

 Measurement rationale: the quality of the reference oscillator is a critical parameter to the

downconversion of Galileo/GPS bands in order to not to degraded the input signal.

 Input: Reference oscillator.

 Output: phase noise of this local oscillator signal.

 Summary: measure is below phase noise limits identified in [6], values shown in Figure 2.11

are:

o -70.28 dBc/Hz @ 100Hz

o -81.13 dBc/Hz @ 1 kHz

o -80.78 dBc/Hz @ 10 kHz

o -105.53 dBc/Hz @ 100 kHz

o -118.59 dBc/Hz @ 1MHz

Figure 2.11: OL phase noise measurement.

2.2 RF Front-end v2.0

Taking into account the experience acquire with the RF FE v1.0 and the feedback from AUDITOR

partners a new version of the FE was designed. This redesign focused on:

 The clock generation/distribution.

 Reduction of EMI between the different RF chains and digital components.

 Layout refactor and an additional FMC-LPC connector to interconnect to the ZC706

Evaluation kit.

AUDITOR D3.1 Version 1.0

 Page 22 (59)

2.2.1 Design

The new design of the RF FE does not introduce important modifications in the architecture design.

The main architecture changes were the use of a single multiband antenna and reorganization of the

upper section of the two configurable bands as shown in Figure 2.12.

Figure 2.12: RF FE v2.0 design

Additionally, the following improvements were applied to the overall design:

 Increased filtering in all digital lines to mitigate ringing and high frequency coupling,

 Two independent clock circuits are included based on two different distribution principles to

evaluate the clock quality and isolation of both options with the other components.

 Integrated a single-ended IC (MAX444) to allow in-PCB single-ended measurements without

additional external elements.

 Merged in the configurable band both RF chains to simplify input stages and optimize the

input power to the first downconverter.

 An additional UART and several digital I/O have been added to the existing interfaces to add

more configuration and testing flexibility.

 Distributed power supplies have been integrated that offer better linearity which will directly

impact in the improvement of the quality of the amplified signals for all LNAs.

In this new FE a common two level amplifier stage now is located close to the antenna. The filtering

for the different bands is separated just before the first configurable down converter that feeds the

second fixed downconverter. Using this shared L2/E5a/L5 approach optimizes the layout space while

reducing power consumption and simplifies the RF design.

The RF chain gains have been optimized using two LNA to use the full dynamic range of the two

downconverters and avoid saturation that would lead to an increase of the output spurious signal

power.

FRONT-END MODULE

FRONT-END
Receiver

FRONT-END
Receiver

GNSS E1/L1
antenna

GNSS E1/L1
antenna

LNA
Filter

Downconverter

Fixed E1/L1 band

2x 8-bit ADC

AGC

Control&Clk

Control (shared)

Microcontroller
Monitor & Control:
- Gain Control
- Frequency Bands
- Sampling

2x 8-bit ADC

AGC

Configurable
Downcoverter

Control

Configurable E5a/L5 or L2 bands

LNA Filter E1/L1

Control&Clk

Clock Generation

Control

Control

Control&Clk

LNA
Filter

Downconverter

16 bit
I/Q samples (E1/L1)

16 bit
I/Q samples (E5a/L5)

M&C interface (UART)

RF “Clk”
Distribution

Digital Clk
Distribution

Ref
Oscillator

Control&Clk Control&Clk

Buffering
Divider

LNA

GNSS L2/E5a/L5
antenna

GNSS L2/E5a/L5
antenna

Filter
E5a/L5

Filter
L2

LNA

AUDITOR D3.1 Version 1.0

 Page 23 (59)

 Interfaces 2.2.1.1

The four external interfaces included in the v1.0 design have not been deeply modified in order to

provide backward compatibility. The main changes can be summarized as:

• Power connector: changed to multiple power connectors ±12V, ±5V, 3.3V

• Serial connector: No changes in the existing one but added an additional UART1. In v1.0

UART0 was the only one available both in the serial and user connector.

• JTAG connector: No changes

• User connector (20+20pin custom connector): No changes in the user connector, added

an additional FMC LPC.

The main changes involved the user connector that shares the same distribution as the v1.0.

However, an additional FMC-LPC connector with similar pinout has been added in order to provide

direct compatibility with the ZC706 evaluation kit FMC connector.

2.2.2 Implementation

In the FE v2.0 several modifications were applied to the layout in order to minimize EMI, clock and

power distribution issues.

 The vias density has been increased and its layout has been optimized to improve the ground

layer and the guidance of high frequency signals.

 Power supplies (±12V, ±5V, 3.3V) have been redesigned and its layout has been distributed

in several groups close to their powered components.

 RF layout has been straightened as much as possible to minimize EMI corner issues,

therefore RF components needed also to be redistributed to follow those new linear paths.

 Test points are now included later in the lab within the RF line if needed.

 Additional filters have been added to the layout to mitigate inducted signals for adjacent

lines.

 All IC are better decoupled with inline protection resistors.

 Power supply lines now included fusible resistor in order to track possible short circuit issues

and also avoid ringing and the propagation of unwanted signals thought VCC networks.

The redesigned layout is shown in Figure 2.13, as it can be easily appreciated that its composition has

suffer important changes since the v1.0 show in Figure 2.4.

On the left side both RF fixed/configurable channels can be identified with their respective antenna

connectors. The lower-right part of the PCB is now dedicated mainly to the digital and clock modules.

The new form factor is compliance with the ZC706 evaluation kit and an additional FMC-LPC

connector in the bottom layer to allow direct connection.

AUDITOR D3.1 Version 1.0

 Page 24 (59)

Figure 2.13: FE v2.0 top layer layout, (153mm x 108.9mm+17.9mm)

The interconnection concept for the final configuration of the FE v2.0 and the ZC706 evaluation kit

board is pictured in Figure 2.13. The direct connection simplifies the tests avoiding the use of high

performance FMC cables which still is possible as the FE v2.0 can be stacked below the ZC706 board.

Figure 2.14: ZC706 connected via FMC-LPC to FE v2.0 layout

 Control & Clk

Configurable

L2 or E5a/L5 POWER

Fixed E1/L1

POWER

FMC-LPC Connector

(bottom)

External Connectors

AUDITOR D3.1 Version 1.0

 Page 25 (59)

2.2.3 Tests

The FE v2.0 PCB is currently being manufactured. Tests performed in v1.0 will be repeated in this

new version to confirm that the design and layout improvements result in noticeable performance

benefits. FE v1.0 is already a functional E1/L1, L2 or E5a/L5 functional RF front-end.

2.3 Firmware

The FE is fully configurable through serial port P3 (+3.3v) that is connected to the embedded

microcontroller. A custom firmware has been developed to monitor and control the main FE

parameters from the digital processing platform.

A typical boot phase can be described as:

 Once the system powered (5V v1.0 or 12V v2.0), the module starts loading the default

configuration where the ADCs are not enable,

 GPS L2 band is selected and a sampling clock of 6.5MHz is used,

 L1 downconverter IC is enabled too,

 All integrated circuits (IC) need to be enable/disable to set the desired configuration using

the serial port.

If the user needs to change the configuration to down convert GPS L5 to IF the typical steps should

be:

1. Plug the L5 antenna.

2. Set multiplexer to L5 instead of L2

3. Enable VCO integrated circuit.

4. Config VCO IC with the L5 default configuration.

5. Enable L5 max IC downconverter.

6. Enable L5 ADC.

7. Choose the sampling clock if a different frequency is needed.

8. Select different IF low pass filter if it is needed to reduce noise.

9. Change last downconverter IF stage gain if it is needed to achieve the optimal signal power.

On the other hand, if the desired band is L1, the first stage mixing is not necessary, so the steps

needed to down convert this band starts at step 5 of the check list.

2.3.1 Message formats

The UART parameters to communicate with the AUDITOR front-end should be configured at:

 9600 baud,

 8bits,

 Parity None,

 One stop.

The messages sent to the FE that comply with the protocol are responded with and ACK message in

the form of an ASCII “OK” or an NACK message “NACK”. Other serial messages that are not well-

formed are considered incorrected and therefore ignored. All serial port messages must end with

one carrier-return followed by one end-of-line character (\r\n).

Recommended initial steps are:

1. Once the serial port is open the user can check the correct communications requesting “ping

message” to the front-end and the front-end should respond an ACK message “OK”.

AUDITOR D3.1 Version 1.0

 Page 26 (59)

2. The second recommended step is to check the current front-end configuration that can be

obtained sending the “???” message to the front-end. The response should be a human

readable message where the current state of all ICs is explained, followed by an “OK”

message.

3. After these two steps the user need to send the messages needed to achieve the

configuration to the main downconverter, as explained in section 2.3 for reference.

Following the example in section 2.3, Table 2.5 details the serial messages needed to perform the

configuration.

Table 2.5: Serial messages example

Step Command Serial message

1 Set multiplexer to L5 instead of L2 < cML2<CR><LF>
> OK

2 Enable VCO integrated circuit. < cVe<CR><LF>
> OK

3 Config VCO IC with the L5 default

configuration.

< cV5<CR><LF>
> OK

4 Enable L5 max IC downconverter. < cL2o1<CR><LF>
> OK
< cL2t1<CR><LF>
> OK

5 Enable L5 ADC. < cA2e<CR><LF>
> OK

6 Choose the sampling clock if a

different frequency is needed.

< cc3<CR><LF>
> OK

7 Select different IF low pass filter

(18Mhz) if it is needed.

< cL2f531<CR><LF>
> OK

Sending the previous list of commands and applying an IF 1176.45 MHz sine signal to L5 inputs, the

signal in Figure 2.10 will be shown in the spectrum analyzer.

The following Table 2.6 lists the full list of UART serial messages that can be used to configure the FE.

AUDITOR D3.1 Version 1.0

 Page 27 (59)

Table 2.6: list of serial messages.

2.4 Summary of RF testing

In [6] the unit tests for the RF hardware were specified (subsection 4.1). In Table 2.7 the results from

the compliance with the proposed test, are summarized.

Table 2.7: GNSS RF chain tests

Test ID Objective Results

RF testing

GNSS RF input chain Verify functionality of the

GNSS RF chain

Output tones input to downconverter

within correct power and frequency

levels.

Reference clock Verify clock stability and

amplitude

Measured phase noise ref TCXO (26MHz):

-103 dBc/Hz <-103@1KHz

-119 dBc/Hz < -116@10KHz

-121 dBc/Hz < -122 @100KHz

-123 dBc/Hz < -135 @1MHz

AUDITOR D3.1 Version 1.0

 Page 28 (59)

Measured phase noise ref oscillator

(2750 MHz):

-116 dBc/Hz < -80 dBc/Hz @10Khz

-122 dBc/Hz < -107 dBc/Hz @ 100KHz

-135 dBc/Hz < -129 dBc/Hz @ 1MHz

Intermediate Frequency Verify IF output IF frequencies correctly configured

deviation below 10KHz

Wireless interface Verify functionality of the

wireless interface (Wi-Fi or

3G, TBC)

Not applicable to the RF FE, will be

implemented in the digital processing

platform using a standard wireless

adapter.

RF front-end electrical performance

Data bandwidth Verify data bandwidth for

each band

Generated samples at 5.2MHz for L1

Generated samples at 5.2/6.5MHz for L2

Generated samples at 26MHz for L5

(decimation of samples performed in

digital processing platform)

Out-of-band filtering Verify filtering of out-of-

band using testing tones

Filtering of out-of-band >60dB @ CF ±50

MHz

Quantization bits Verify ADC bit resolution by

histogram examination

Generated histograms via the offline

post-processed of the ADC inputs.

Optimized AGC to use full ADCs dynamic

ranges.

Noise figure Noise figure estimation 2-3dB (@ dowconverter input) < 4dB

Frequency bands Verify available frequency

bands simultaneously or

selectable

L1, L2 bands tested I/Q samples

generated at baseband

Electromagnetic shielding Verify GNSS and wireless

interface RF shielding

EMI reduced by multiple shielding covers

and signal layout. Several improvements

performed in v2.0.

PCB Testing procedures

Printed circuit board Verify functionality of the

printed circuit board

PCB electrical tests performed, no

noticeable manufacturing issues

detected.

AUDITOR D3.1 Version 1.0

 Page 29 (59)

3. Digital Processing Platform (CTTC)

The Digital Processing Platform is the device in charge of executing the software-defined GNSS

receiver and other related controlling programs. In this WP, the design described in Deliverable 2.2

has been consolidated and implemented. In summary, it consists of a Xilinx’s Zynq-based platform, a

System-on-Chip (SoC) that contains an ARM processor and a FPGA processor. The ARM processor

(known as Processing System or PS) runs GNSS-SDR, the open source software receiver developed

within AUDITOR, along with some control scripts, and the FPGA processor (known as Processing Logic

or PL) executes some specific functions of the software receiver in order to increase the number of

satellites that can be acquired and tracked in real time.

According to some experiments (which results were reported in [7]), the dual-core ARM processor

that is shipped in a Zynq is not powerful enough to sustain real-time processing of GNSS signals even

in the most basic configuration (GPS L1 C/A, 2 Msps). Other ARM-based platforms (such as Raspberry

Pi 3, which ships a quad-core processor) are able to sustain about 6-8 satellites in real-time, which

are enough for getting PVT fixes but not for applications targeting high accuracy. Thus, the

acceleration provided by the PL is of key importance in order to deliver quality GNSS observables in

real time when using an embedded system, and benefiting from their low power consumption, small

size, rugged operating ranges, and low per-unit cost.

3.1 Zynq Processing System (PS)

3.1.1 Development cycle

This Section describes the development cycle for building and executing GNSS-SDR, its corresponding

Quality Assessment code and the control system scripts in an embedded computer. In this example,

we are working with a ZedBoard (a development board that ships a Xilinx Zynq-7000 all-

programmable SoC, which houses two ARM and one FPGA processor in a single chip), but this

procedure is applicable to other embedded platforms without much modification.

Once all the required dependencies are already installed, GNSS-SDR can be built from source in ARM

processors without requiring any extra configuration step. However, this building process can easily

take more than 10 hours if it is executed on the Zynq device. Thus, in order to speed up the

development cycle from a change in the source code to the execution in an embedded platform, we

need to resort to cross-compilation.

Cross-compilation consists of a building framework capable of creating executable code for a

platform other than the one on which the compiler is running. In our example, we would like to build

GNSS-SDR with the powerful, fast processor of a general-purpose desktop computer, and to generate

binaries that can be directly executed by the Zynq device. By using cross-compilation, we can shorten

the building time from more than 10 hours to less than 10 minutes. This improves Testability

(defined in Deliverable 1.3, see [6]), as one of its requirements is that a testing cycle has to be fast.

The cross-compilation environment proposed here is based on OpenEmbedded (see

http://www.openembedded.org), a building framework for embedded Linux. OpenEmbedded offers

a best-in-class cross-compile environment, allowing developers to create a complete, custom

GNU/Linux distribution for embedded systems. Using OpenEmbedded, we created a software

http://www.openembedded.org)/

AUDITOR D3.1 Version 1.0

 Page 30 (59)

developer kit (SDK) that installs a ready-to-use cross-compilation environment in the user’s

computer. The SDK has been made publicly and freely available at http://gnss-

sdr.org/docs/tutorials/cross-compiling/, along with detailed instructions to allow users to build their

own customized SDK.

The SDK provides the toolchain installer, a script that installs a cross-compiler, a cross-linker and a

cross-debugger, forming a completely self-contained toolchain which allows users to cross-develop

on the host machine for the target hardware. Cross-compilation if of paramount importance to

accelerate the development and testing of GNSS-SDR in embedded systems.

The general procedure can be summarized as follows (more details in the website):

1) Get the Software Development Kit. There are two options here:
a. Download it from http://gnss-sdr.org/docs/tutorials/cross-compiling/
b. Customize and build your own SDK (instructions provided in the website)

2) Install the SDK. This consists of a one-line command which executes a shell script:

$ sudo sh oecore-x86_64-armv7ahf-neon-toolchain-nodistro.0.sh

3) Setting up the cross-compiling environment. Running the environment script will set up
most of the variables required to compile GNSS-SDR This has to be executed each time you
want to run the SDK (and since the environment variables are only set for the current shell,
you need to source it for every console you will run the SDK from):

$. /usr/local/oecore-x86_64/environment-setup-armv7ahf-neon-oe-linux-gnueabi

4) Cross-compiling GNSS-SDR and installing it on the target filesystem

$ git clone https://github.com/gnss-sdr/gnss-sdr.git

$ cd gnss-sdr

$ git checkout next

$ cd build

$ cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/Toolchains/oe-sdk_cross.cmake \

-DCMAKE_INSTALL_PREFIX=/usr ..

$ make

$ sudo make install DESTDIR=/usr/local/oecore-x86_64/sysroots/armv7ahf-neon-oe-linux-

gnueabi/

Please note that we set the install prefix to /usr. That will be the installation location of the

project on the embedded device. We use this because all links and references within the file

system will be based on this prefix, but it is obviously not where we want to install these files

on our own host system. Instead, we use the make program’s DESTDIR directive. On the

device itself, however, the file system would have this installed onto /usr, which means all

our links and references are correct as far as the device is concerned.

5) Copying an image file to the SD card that will be then inserted into the ZedBoard. The
website http://gnss-sdr.org/docs/tutorials/cross-compiling/ describes several methods to do
this.

http://gnss-sdr.org/docs/tutorials/cross-compiling/
http://gnss-sdr.org/docs/tutorials/cross-compiling/
http://gnss-sdr.org/docs/tutorials/cross-compiling/
http://gnss-sdr.org/docs/tutorials/cross-compiling/

AUDITOR D3.1 Version 1.0

 Page 31 (59)

This procedure generates a fully functional, customized Linux distribution that will run on the

Processing System, allowing the execution of GNSS-SDR module and all the required control and

interface scripts.

3.1.2 GNSS-SDR module

GNSS-SDR is an open source project that implements a global navigation satellite system software

defined receiver in C++. With GNSS-SDR, users can build a GNSS software receiver by creating a graph

where the nodes are signal processing blocks and the lines represent the data flow between them.

The software provides an interface to different suitable RF front-ends and implements the entire

receiver’s chain up to the navigation solution. Its design allows any kind of customization, including

interchangeability of signal sources, signal processing algorithms, interoperability with other systems,

output formats, and offers interfaces to all the intermediate signals, parameters and variables.

The goal is to provide efficient and truly reusable code, easy to read and maintain, with fewer bugs,

and producing highly optimized executables in a variety of hardware platforms and operating

systems. In that sense, the challenge consists of defining a gentle balance between level of

abstraction and performance, addressing:

 Concurrency (take advantage of multicore processors).
 Efficiency (take advantage of the specific processor architectures).
 Performance (and how to measure it!).
 Portability (should live in a complex, dynamic ecosystem of operating systems and processor

architectures).
 Ability to run in real-time or in post-processing.
 Extendibility (easy addition and test of new algorithms and implementations).

The proposed software receiver runs in a wide range of processor architectures (including

AUDITOR’s) and provides interfaces to a variety of either commercially available or custom-made RF

front-ends (such as AUDITOR’s), adapting the processing algorithms to different sampling

frequencies, intermediate frequencies and sample resolutions. It also can process raw data samples

stored in a file. The software performs signal acquisition and tracking of the available satellite signals,

decodes the navigation message and computes the observables needed by positioning algorithms,

which ultimately compute the navigation solution. It is designed to facilitate the inclusion of new

signal processing techniques, offering an easy way to measure their impact in the overall receiver

performance. Testing of all the processes is conducted both by the systematic functional validation of

every single software block and by experimental validation of the complete receiver using both real

and synthetic signals. The processing output can be stored in Receiver Independent Exchange Format

(RINEX), used by most geodetic processing software for GNSS, or transmitted as RTCM 3.2 messages

through a TCP/IP server in real-time.

GNSS-SDR module’s design was described in Deliverable 2.2 (see [2]), Section 3.4.2. Basically, it

consists of a control plane and a signal processing plane, described below.

AUDITOR D3.1 Version 1.0

 Page 32 (59)

 Control plane 3.1.2.1

The Control Plane (which design was described in Deliverable D2.2 [2], Section 3.4.2.1) is in charge of

creating a flow graph of interconnected nodes. The nodes represent signal processing blocks, and the

link between nodes represent unidirectional flows of data. Then, an underlying scheduling system

takes data samples from signal sources (that is, a file or actual digitized GNSS signals coming from the

output of a RF front-end) to signal sinks (that is, blocks in charge of displaying or storing the final

results of the signal processing).

This process scheduling is a key feature to achieve real-time, and to scale well when the software is

executed in a more powerful processor. Task parallelization focuses on distributing execution

processes (threads) across different parallel computing nodes (processors), each executing a

different thread (or process) on the same or different data. Spreading processing tasks along

different threads must be carefully designed in order to avoid bottlenecks (either in the processing or

in memory access) that can block the whole processing chain and prevent it from attaining real-time

operation. This section provides an overview of the task scheduling strategy implemented in GNSS-

SDR.

GNSS-SDR uses a “thread-per-block” scheduler, which means that each instantiated processing block

runs in its own thread. This architecture scales very well to multicore processor architectures. The

implementation is provided by GNU Radio (see https://gnuradio.org), whose flow graph

computations can be jointly modelled as a Kahn process [8], [9]. A Kahn process describes a model of

computation where processes are connected by communication channels to form a network.

Processes produce data elements or tokens and send them along a communication channel where

they are consumed by the waiting destination process. Communication channels are the only

method processes may use to exchange information. Kahn requires the execution of a process to be

suspended when it attempts to get data from an empty input channel. A process may not, for

example, test an input for the presence or absence of data. At any given point, a process can be

either enabled or blocked waiting for data on only one of its input channels: it cannot wait for data

from more than one channel. Systems that obey Kahn's mathematical model are determinate: the

history of tokens produced on the communication channels does not depend on the execution order

[8]. With a proper scheduling policy, it is possible to implement software defined radio process

networks holding two key properties:

 Non-termination: understood as an infinite running flow graph process without deadlocks
situations, and

 Strictly bounded: the number of data elements buffered on the communication channels
remains bounded for all possible execution orders.

An analysis of such process networks scheduling was provided in [10]. By adopting GNU Radio's

signal processing framework, GNSS-SDR bases its software architecture in a well-established design

and extensively proven implementation.

Software defined receivers can be represented as flow graph of nodes. Each node represents a signal

processing block, whereas links between nodes represents a flow of data. The concept of a flow

graph can be viewed as an acyclic directional graph with one or more source blocks (to insert

https://gnuradio.org)/

AUDITOR D3.1 Version 1.0

 Page 33 (59)

samples into the flow graph), one or more sink blocks (to terminate or export samples from the flow

graph), and any signal processing blocks in between. The diagram of a processing block (that is, of a

given node in the flow graph), as implemented by the GNU Radio framework, is shown in Figure 3.1.

Each block has a completely independent scheduler running in its own execution thread and a

messaging system for communication with other upstream and downstream blocks. The actual signal

processing is performed in the work() method.

Figure 3.1: Diagram of a signal processing block, as implemented by GNU Radio. Figure from [7].

Each block can have an arbitrary number of input and output ports for data and for asynchronous

message passing with other blocks in the flow graph. In all software applications based on the GNU

Radio framework, the underlying process scheduler passes items (i.e., units of data) from sources to

sinks. For each block, the number of items it can [8] process in a single iteration is dependent on how

much space it has in its output buffer(s) and how many items are available on the input buffer(s). The

larger that number is, the better in terms of efficiency (since the majority of the processing time is

taken up with processing samples), but also the larger the latency that will be introduced by that

block. On the contrary, the smaller the number of items per iteration, the larger the overhead that

will be introduced by the scheduler.

Thus, there are some constraints and requirements in terms of number of available items in the input

buffers and in available space in the output buffer in order to make all the processing chain efficient.

In GNU Radio, each block has a runtime scheduler that dynamically performs all those computations,

using algorithms that attempt to optimize throughput, implementing a process network scheduling

that fulfills the requirements described in [10]. Each processing block executes in its own thread. A

detailed description of the GNU Radio internal scheduler implementation (memory management,

requirement computations, and other related algorithms and parameters) can be found in [11], and

of course in GNU Radio source code (available at https://github.com/gnuradio/gnuradio).

Under this scheme, software-defined signal processing blocks read the available samples in their

input memory buffer(s), process them as fast as they can, and place the result in the corresponding

output memory buffer(s), each of them being executed in its own, independent thread. This strategy

results in a software receiver that always attempts to process signal at the maximum processing

capacity, since each block in the flow graph runs as fast as the processor, data flow and buffer space

https://github.com/gnuradio/gnuradio)

AUDITOR D3.1 Version 1.0

 Page 34 (59)

allows, regardless of its input data rate. Achieving real-time is only a matter of executing the

receiver’s full processing chain in a processing system powerful enough to sustain the required

processing load, but it does not prevent from executing exactly the same process at a slower pace,

for example, by reading samples from a file in a less powerful platform.

Figure 3.2: Diagram of a multi-band, multi-system GNSS-SDR flow graph

Figure 3.2 shows a possible flow graph diagram used in GNSS-SDR. There is a signal source block (a

dual-band radio-frequency front-end) writing samples in a memory buffer at a given sampling rate;

AUDITOR D3.1 Version 1.0

 Page 35 (59)

some signal conditioning (possible data type adaptation, filtering, frequency downshifting to

baseband, and resampling); a set of parallel channels, each one reading form the same upstream

buffer and targeted to a different satellite; a block in charge of the formation of observables

collecting the output of each satellite channel after the despreading (and thus in a much slower rate);

and a signal sink, responsible for computing the position-velocity-time solution from the obtained

observables and providing outputs in standard formats (such as KML, GeoJSON, RINEX, RTCM and

NMEA).

The flow graph in Figure 3.2 defines a multi-band, multi-system GNSS receiver. In all cases, each of

the processing blocks will be executing its own thread, defining a multi-threaded GNSS receiver that

efficiently exploits task parallelization.

 Signal processing plane 3.1.2.2

The Signal Processing Plane (which design was described in Deliverable D2.2, see [2] Section 3.4.2.2)

is in charge of defining and implementing all the processing blocks that will form the receiver’s flow

graph defined in the Control Plane.

In the system developed within AUDITOR, the Processing System of the Zynq device will run exactly

the same code than in the open source version of GNSS-SDR but the implementation of specific

functions (described in Section 3.2), which are off-loaded to the FPGA in order to accelerate their

execution. The ARM – FPGA interface for computation off-loading is described in Section 3.1.4.

The documentation about the available blocks and their configuration parameters are published

online at http://gnss-sdr.org/docs/sp-blocks/

3.1.3 System control

 Receiver configuration 3.1.3.1

GNSS-SDR’s configuration mechanism design was described in Deliverable 2.2 (see [2]), Section

3.4.2.1.1, and in this WP the design has been consolidated, implemented and tested, demonstrating

its flexibility to accommodate the continuously growing number of receiver’s configuration

parameters and options.

Configuration allows users to define in an easy way their own custom receiver by specifying the flow

graph (type of signal source, number of channels, algorithms to be used for each channel and each

module, strategies for satellite selection, type of output format, etc.). Since it is difficult to foresee

what future module implementations will be needed in terms of configuration, we used a very simple

approach that can be extended without a major impact in the code. This can be achieved by simply

mapping the names of the variables in the processing blocks with the names of the parameters in the

configuration.

For instance, parameters related to SignalSource should look like this:

http://gnss-sdr.org/docs/sp-blocks/

AUDITOR D3.1 Version 1.0

 Page 36 (59)

SignalSource.parameter1=value1

SignalSource.parameter2=value2

The name of these parameters can be anything but one reserved word: implementation. This

parameter indicates in its value the name of the class that has to be instantiated by the factory for

that role. For instance, if we want to use the implementation Pass_Through for

module SignalConditioner, the corresponding line in the configuration file would be:

SignalConditioner.implementation=Pass_Through

Since the configuration is just a set of property names and values without any meaning or syntax, the

system is very versatile and easily extendable. Adding new properties to the system only implies

modifications in the classes that will make use of these properties. In addition, the configuration files

are not checked against any strict syntax so it is always in a correct status (as long as it contains pairs

of property names and values in INI format. An INI file is an 8-bit text file in which every property has

a name and a value, in the form name = value. Properties are case-insensitive, and cannot contain

spacing characters. Semicolons (;) indicate the start of a comment; everything between the

semicolon and the end of the line is ignored:

; THIS IS A COMMENT

SignalConditioner.implementation=Pass_Through ; THIS IS ANOTHER COMMENT

In this way, a full GNSS receiver can be uniquely defined in one text file in INI format:

$ gnss-sdr --config_file=/path/to/my_receiver.conf

GNSS-SDR allows the user to define a custom GNSS receiver, including its architecture (number of

bands, channels per band and targeted signal) and the specific algorithms and parameters for each of

the processing blocks through a single configuration file (a simple text file in INI format). Thus, each

configuration file defines a different GNSS receiver. Some examples of such files are available at

gnss-sdr/conf.

 Startup scripts and status monitoring 3.1.3.2

To be defined in WP6.

3.1.4 PS-PL low speed communications

The control of the GNSS-SDR acquisition and tracking hardware accelerators and the front-end

configuration requires a bi-directional low speed communication pipe between the software plane

and the PL. Next table introduces a summary of the data exchange to and from the software plane

and the hardware plane:

AUDITOR D3.1 Version 1.0

 Page 37 (59)

Table 3.1: Data exchange to and from the software plane and the hardware plane

Data source Data sink Message type Maximum frequency

GNSS-SDR Acquisition accelerator

Initialization data: PRN

code and acquisition

parameters

1 Hz.

Acquisition accelerator GNSS-SDR

Acquisition result: Code

delay, Doppler

frequency, and test

statistics

1 Hz.

GNSS-SDR Tracking accelerator

Initialization data: PRN

code and pull-in

parameters

1 Hz.

GNSS-SDR Tracking accelerator

Tracking loop

parameters: Code NCO

and Carrier NCO

commands

1 kHz.

Tracking accelerator GNSS-SDR Correlators output 1 kHz.

GNSS-SDR
Front-end hardware

module

Initialization

parameters: Carrier

frequency, number of

channels, sampling

frequency, gain

parameters

One-time

configuration at the

receiver startup.

Front-end hardware

module
GNSS-SDR

Front-end status

feedback
0.01 Hz.

A suitable communication mechanism, which provides enough bandwidth and low latency with low

complexity, is the so-called memory mapped registers. Each hardware accelerator publishes a set of

AXI registers at specific memory addresses as described in Section 3.2. In order to minimize the

latency and the required computational resources, each accelerator provides an interrupt signal that

triggers the data gathering from GNSS-SDR.

 User Input-Output (UIO) driver framework 3.1.4.1

Linux provides a standard called UIO (User I/O) framework for developing user-space-based device

drivers. The UIO framework defines a small kernel-space component that performs two key tasks:

 Indicate device memory regions to user space.

 Register for device interrupts and provide interrupt indication to user space.

AUDITOR D3.1 Version 1.0

 Page 38 (59)

The kernel-space UIO component then exposes the device via a set of sysfs entries like /dev/uioXX.

The user-space component searches for these entries, reads the device address ranges and maps

them to user space memory.

The user-space component can perform all device-management tasks including I/O from the device.

For interrupts however, it needs to perform a blocking read() on the device entry, which results in

the kernel component putting the user-space application to sleep and waking it up once an interrupt

is received.

In order to activate the Linux kernel UIO driver, the device tree description for the hardware

accelerators must contain the generic-uio string. Next device tree DTS entry shows an example of a

description for a tracking accelerator:

multicorrelator_resampler_S00_AXI_0: multicorrelator_resampler_S00_AXI@43c00000 {

 compatible = "generic-uio";

 interrupt-parent = <&intc>;

 interrupts = <0 31 4>;

 reg = <0x43c00000 0x10000>;

 xlnx,s-start-count = <0x20>;

 };

3.1.5 PS-PL high speed communications

The baseband signal samples flow from the AUDITOR custom front-end ADCs to the hardware

accelerators is routed directly to the Zynq FPGA fabric, thus, there is no need of any communication

mechanism in the PS plane. However, for debugging purposes and to support USB-based front-ends,

such as the Ettus Research Universal Software Radio Peripheral (USRP) family, it is required a high-

speed communication mechanism from PS to PL.

The selected mechanism is based on the Xilinx AXI Direct Memory Access (AXI DMA) IP core (see

http://www.wiki.xilinx.com/DMA+Drivers+-+Soft+IPs) with a user space DMA driver.

The AXI DMA IP provides high-bandwidth direct memory access between memory and AXI4-Stream-

type target peripherals. Its optional scatter gather capabilities also offload data movement tasks

from the CPU in processor-based systems. Initialization, status, and management registers are

accessed through an AXI4-Lite slave interface.

Features Supported

 AXI4 and AXI4-Stream compliant

 Optional Scatter/Gather (SG) DMA support. When Scatter/gather mode is not selected the IP

operates in Simple DMA mode.

http://www.wiki.xilinx.com/DMA+Drivers+-+Soft+IPs

AUDITOR D3.1 Version 1.0

 Page 39 (59)

 Primary AXI4 Memory Map and AXI4-Stream data width support of 32, 64, 128, 256, 512, and

1024 bits

 Optional Data Re-Alignment Engine

 Optional AXI Control and Status Streams

 Multi-channel mode

 Support for up to 64-bit Addressing

The user space driver is based on the open source project EZDMA (see

https://github.com/jeremytrimble/ezdma) Figure 3.3 shows how EZDMA works. The driver publish a

set of sysfs files to trigger DMA transfers to/from the user space with simple read() and write()

operations. This is also known as zero-copy operations.

Figure 3.3: EZDMA driver architecture (from [12]).

In order to activate the EZDMA kernel driver, the device tree description must contain the DMA

device descriptions and the EZDMA entry. Next device tree DTS subsection shows an example of an

AXI DMA + EZDMA description:

 axi_dma_0: dma@40400000 {

 #dma-cells = <1>;

 compatible = "xlnx,axi-dma-1.00.a";

 interrupt-parent = <&intc>;

 interrupts = <0 29 4 0 30 4>;

 reg = <0x40400000 0x10000>;

 xlnx,include-sg ;

 dma-channel@40400000 {

 compatible = "xlnx,axi-dma-mm2s-channel";

 dma-channels = <0x1>;

 interrupts = <0 29 4>;

 xlnx,datawidth = <0x20>;

https://github.com/jeremytrimble/ezdma

AUDITOR D3.1 Version 1.0

 Page 40 (59)

 xlnx,device-id = <0x0>;

 };

 dma-channel@40400030 {

 compatible = "xlnx,axi-dma-s2mm-channel";

 dma-channels = <0x1>;

 interrupts = <0 30 4>;

 xlnx,datawidth = <0x20>;

 xlnx,device-id = <0x0>;

 };

 };

 ezdma0: dmatest@0 {

 compatible = "ezdma";

 dmas = <&axi_dma_0 0 &axi_dma_0 1>;

 dma-names = "loop_tx", "loop_rx";

 ezdma,dirs = <2 1>; // direction of DMA: 1 = RX (dev->cpu), 2 = TX (cpu->dev)

 };

3.2 Zynq Processing Logic (PL)

As shown in [7], current ARM-based platforms are not fast enough for a multiple-constellation,

multiple-band GNSS receiver configuration working in real time, as required by AUDITOR. Hence, the

most computational demanding operations are off-loaded to the FPGA device.

This allows a clear interface between free and open source software (that is, GNSS-SDR) and

proprietary software. The open source version is a fully functional GNSS receiver, that users can

execute in their own desktop or laptop computer. However, in order to attain real-time in an

embedded device (specially for multi-band, multi-constellation configurations), users must resort to

the FPGA off-loading provided by the intellectual property (IP) cores developed within AUDITOR. In

this way, the whole receiver benefits from the extensive testing and collaborative development of

GNSS-SDR, while professional users have the possibility to embed the software in small form factor

devices.

3.2.1 Hardware accelerators

 Overview 3.2.1.1

The AUDITOR GNSS receiver is based on a Zynq System-on-Chip (SoC). The Zynq SoC contains a two-

core ARM processor and an FPGA together in the same chip. The Zynq is designed to maximize the

advantages of using an ARM software-based system combined with FPGA-based HW accelerators. All

together the system can obtain high performance in terms of signal processing speed while

minimizing the energy consumption.

The ARM processors run a Linux operating system and could in principle execute all the tasks of the

AUDITOR GNSS receiver. However, the ARM processors cannot deliver real-time performance when

running the GNSS receiver due to their limited performance.

AUDITOR D3.1 Version 1.0

 Page 41 (59)

In order to produce a GNSS receiver that can function properly in real time, hardware accelerators

were implemented for various functionalities of the physical layer.

The hardware accelerators are implemented in VHDL and encapsulated as IP modules. These IP

modules can be reused and instantiated as needed in the main Zynq design. The IP modules replace

various functionalities that were earlier implemented in software, which have stringent demands in

terms of real-time performance.

 Implementation 3.2.1.2

The AUDITOR GNSS receiver performs two types of tasks that require very intensive computations:

the acquisition process and the tracking multi-correlation process of the physical layer. These tasks

work at the received sampling rate, whereas the remaining tasks work at the received code rate,

which is much lower than the sampling frequency. Therefore, two types of hardware accelerators

were implemented:

- Acquisition

- GPS and Galileo Multicorrelators

Figure 3.4 shows a block diagram of the main HW components involved in the data flow.

The analog front-end receives data using two frequency bands simultaneously. One of those two

frequency bands is fixed to the GPS L1/CA, Galileo E1, and GPS SBAS band. The other frequency band

can be switched either to GPS L2C or Galileo E5A and GPS L5

The buffers compensate for temporary delays caused by the hardware accelerator modules. The

hardware accelerator modules can process samples faster than the received data rate on average,

but they might introduce temporary delays due to processing or communication with the ARM

processors. We call buffer 1 the buffer that stores the signal of the GPS L1/CA, Galileo E1 and GPS

SBAS band. We call buffer 2 the buffer that stores the signal of the GPS L2C or the signal of the

Galileo E5A and GPS L5 band.

The Acquisition HW accelerators runs a parallel code phase search Acquisition. It frees the ARM

processors from this task. The ARM processors configure the Acquisition HW module and read the

Acquisition results using the low speed communication bus (see section 3.1.4) and the hardware

interrupts.

The GPS Multicorrelator hardware accelerators and the Galileo Multicorrelator hardware

accelerators perform the Doppler wipeoff and the multi-correlation between the received signal and

a local copy of the GNSS code. They free the ARM processors from this task. The ARM processors

configure the Multicorrelator modules and read the multi-correlator results using the low speed

communication bus (see section 3.1.4) and the hardware interrupts.

AUDITOR D3.1 Version 1.0

 Page 42 (59)

The Acquisition HW accelerators and the Multicorrelator HW accelerators keep track of all the

samples that are received from the analog front-end in order to keep the synchronization between

them. The acquisition returns a sample pointer that is then used by the Multicorrelator HW

accelerators to process the received signal at the right synchronization point.

Figure 3.4: Block Diagram of the data flow inside the HW part of the receiver

The Acquisition HW accelerator can be used to run the acquisition with both GPS and Galileo signals.

It has two input high speed ports, such that it can be connected to both Buffer 1 and Buffer 2.

AUDITOR D3.1 Version 1.0

 Page 43 (59)

The GPS Multicorrelator hardware accelerators can only be used for GPS signals. They have one

input high speed port.

The Galileo Multicorrelator hardware accelerators can in principle be used for both GPS and Galileo

signals. However, they occupy more FPGA resources than the GPS Multicorrelator. Therefore, to save

space in the FPGA, the GPS signals are tracked using the GPS Multicorrelator and not the Galileo

Multicorrelator.

When testing without the analog front-end, the DMA is used to transfer samples from the ARM

processors main memory to the HW accelerators. This is shown in Figure 3.5.

Figure 3.5: Block Diagram of the data flow inside the HW part of the receiver when testing with the

DMA

Figure 3.6 shows an example of several hardware accelerator modules instantiated in a Zynq design.

The main parts of the design are the ARM processors, the DMA, the Buffer, the Multicorrelator

modules and the Acquisition module. This is an example of a design used for testing. The ARM

processors use the DMA to send samples stored in a file to the Acquisition and Multicorrelator

modules using the Buffer. The path DMA -> Buffer -> Acquisition/Multicorrelator hardware

accelerator modules is connected using the high speed PS-PL communications explained in section

3.1.5. The DMA itself and the Acquisition/Multicorrelator hardware accelerators are connected to

AUDITOR D3.1 Version 1.0

 Page 44 (59)

the ARM using the PS-PL low speed communications explained in section 3.1.4. and the hardware

interrupts. The Acquisition and Multicorrelator accelerator modules are memory mapped to the ARM

processors using this low speed PS-PL communications bus. The ARM processors control the

hardware accelerators using these memory mapped registers.

Figure 3.6: Hardware Accelerator Modules

 Buffers 3.2.1.3

In WP3, the buffer design described in [2] section 3.2.2.1, has been consolidated and implemented.

As mentioned in section 3.2.1.2 of this document, the buffers are used to compensate for temporary

delays introduced by the hardware accelerators during acquisition or tracking. The hardware

accelerators can process samples faster than the received sample rate on average. However

temporary delays might be introduced due to signal processing calculations, communication

between the hardware accelerators and the ARM processors, etc. The buffers are dimensioned in

order to occupy the minimum space in the FPGA while ensuring that no samples are lost during

operation.

 Signal Acquisition 3.2.1.4

In WP3, the Signal Acquisition design described in [2] section 3.2.2.2, has been consolidated and

implemented. The Acquisition module runs a parallel code phase search acquisition algorithm. The

AUDITOR D3.1 Version 1.0

 Page 45 (59)

result of the acquisition is an estimation of the synchronization point in the received signal and an

estimation of the Doppler frequency. The Doppler sweep is done in the software, this is: the software

runs the hardware Acquisition accelerator for each Doppler frequency candidate.

The Acquisition module has two input high speed communication ports (AXI-Stream ports) used to

connect the Acquisition hardware with the corresponding buffer.

Figure 3.7 shows the aspect of the Acquisition IP block. The debugout port is an optional port for

debugging which will not be used in the final version.

Figure 3.7: Acquisition Hardware Accelerator

The input/output ports shown in Figure 3.7 are detailed in Table 3.2.

Table 3.2: Acquisition Hardware Accelerator ports

Port Input/Output Explanation

S_AXI Input AXI port (low speed communications). This port is used to

connect the Acquisition hardware accelerator to the ARM

processors.

S00_AXIS Input AXI-Stream port 1 (high speed communications port 1). This

port is to be used to connect the Acquisition hardware

accelerator to Buffer 1, see section 3.2.1.1).

S01_AXIS Input AXI-Stream port 2 (high speed communications port 2). This

port is to be used to connect the Acquisition hardware

AUDITOR D3.1 Version 1.0

 Page 46 (59)

accelerator to Buffer 2, see section 3.2.1.1).

S_AXIS_ACLK Input Digital clock of the AXI-stream buses

S_AXI_ARESETN Input Reset of the AXI bus (also used as main reset for this module)

CLK_PROC Input Clock for the processing logic: by default the module has

separate clocks for the AXI bus (not shown by default), the AXI-

Stream bus (shown above) and the processing logic. The reason

why there are three separate clocks is to allow for the possibility

of using a higher frequency clock for part of the processing

logic. By default the module is internally designed such that all

three clocks are the same. Raising the clock of the processing

logic would require a modification in the VHDL code.

Introut Output Output interrupt line. The interrupt is asserted when the

acquisition process is finished.

 Signal tracking 3.2.1.5

In WP3, the Signal Tracking design described in [2] section 3.2.2.3 has been consolidated and

implemented. There are two Multicorrelator HW accelerator modules the GPS Multicorrelator

module and the Galileo Multicorrelator module.

As mentioned in section 3.2.1.2, the Galileo Multicorrelator hardware accelerators can in principle be

used for both GPS and Galileo signals. However, they occupy more FPGA resources than the GPS

Multicorrelator. Therefore, to save space in the FPGA, the GPS signals are tracked using the GPS

Multicorrelator and not the Galileo Multicorrelator.

 GPS Multicorrelator 3.2.1.6

The GPS Multicorrelator module runs a Doppler wipe-off and a multicorrelation between the

received signal and a local copy of the GPS code.

Figure 3.8 shows the aspect of the GPS Multicorrelator IP block. The debugout ports is an optional

port for debugging which will not be used in the final version.

AUDITOR D3.1 Version 1.0

 Page 47 (59)

Figure 3.8: GPS Multicorrelator HW accelerator

The input/output ports shown in Figure 3.8 are detailed in Table 3.3.

Table 3.3: GPS Multicorrelator Accelerator ports

Port Input/Output Explanation

S_AXI Input AXI port (low speed communications). This port is used to

connect the Acquisition hardware accelerator to the ARM

processors.

S_AXIS Input AXI-Stream port (high speed communications). This port is to

be used to connect the Acquisition hardware accelerator to

Buffer 1 or Buffer 2, see section 3.2.1.1).

S_AXI_ACLK Input Digital clock of the AXI bus

S_AXI_ARESETN Input Reset of the AXI bus (also used as main reset for this module)

S_AXIS_ACLK Input Digital clock of the AXI-stream bus

S_AXIS_ARESETN Input Reset of the AXI Stream bus

CLK_PROC Output Clock for the processing logic: by default the module has

separate clocks for the AXI bus (not shown by default), the

AXI-Stream bus (shown above) and the processing logic. The

reason why there are three separate clocks is to allow for the

possibility of using a higher frequency clock for part of the

processing logic. By default the module is internally designed

such that all three clocks are the same. Raising the clock of

the processing logic would require a modification in the VHDL

code.

Introut Output Output interrupt line. The interrupt is asserted when the

acquisition process is finished.

AUDITOR D3.1 Version 1.0

 Page 48 (59)

 Galileo Multicorrelator 3.2.1.7

The Galileo Multicorrelator module runs a Doppler wipe-off and a multicorrelation between the

received signal and a local copy of the Galileo code.

The Galileo Multicorrelator HW accelerators are the same as the I/O ports of the GPS Multicorrelator

HW accelerator (see Figure 3.3).

3.3 Summary of indicators status for the software-defined receiver

In Deliverable 1.3 (see [6]) we identified a set of indicators for the software-defined receiver and

provided a report on its status at the start of AUDITOR. Below, we reproduce the same table,

indicating the progress achieved since the beginning of the project.

Table 3.4: GNSS-SDR current status.

Indicator Requirements Current status
Status

 M0
Status
M16

Definition of
project’s
geographical
coordinate frame
and geodetic datum.

Position must be
expressed in an
adequate coordinate
reference system and
geodetic datum.

The World Geodetic System (WGS84) is a
standard for use in cartography, geodesy, and
navigation (including GPS and Galileo). Position
fixes will be expressed in geographic
coordinates (latitude and longitude) and height
above the gravity geoid (i.e., orthometric
height).

Definition of
accuracy metrics
and procedures.

Definition of metrics for
2D and 3D positioning.

Detailed definition of
measurement
procedures.

AUDITOR accuracy metrics:

 for 2D positioning: Distance Root
Mean Square (DRMS) and the Circular
Error Probability (CEP), in meters,
and,

 for 3D positioning: the Mean Radial
Spherical Error (MRSE) and the
Spherical Error Probable (SEP), in
meters.

Measurement procedures defined in
Deliverable 1.3.

Meet AUDITOR’s
static positioning
accuracy
requirements.

Not defined.
Testing software implemented. Experiments to
be addressed in WP6.

Ongoing

Meet AUDITOR’s
dynamic positioning
accuracy
requirements.

Not defined.
Testing software implemented. Experiments to
be addressed in WP6.

Ongoing

24/7 service 24/7 service
Measurement procedures defined in Section 6
in Deliverable 1.3. Experiments to be addressed
in WP6.

Ongoing

Typical duration of
usage session

Targeting > 24 h.
Measurement procedures defined in Section 6
in Deliverable 1.3. Experiments to be addressed
in WP6.

Ongoing

AUDITOR D3.1 Version 1.0

 Page 49 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

Acquisition
sensibility

Not defined. Measurement procedures defined in Section 6.
Experiments to be addressed in WP6.

Ongoing

Tracking sensibility
Not defined. Measurement procedures defined in Section 6.

Experiments to be addressed in WP6.

Ongoing

Time to First Fix

Definition of detailed
TTFF measurement
procedures in different
receiver’s status.

Cold start TTFF measurement procedures
defined in Section 6 in Deliverable 1.3.

Warm start TTFF measurement procedures
defined in Section 6 in Deliverable 1.3.

Hot start TTFF measurement procedures
defined in Section 6 in Deliverable 1.3.

Reacquisition TBD Measurement procedures defined in Section 6.
Experiments to be addressed in WP6.

Ongoing

Number of parallel
channels that the
software receiver
can sustain in real
time, given the
targeted GNSS signal
of each channel and
the computational
resources available
for signal
processing.

More than 8 channels

per GNSS signal in a

multiband configuration.

More than 8 channels per GNSS signal in a

multiband configuration.

Power consumption
for a given host
computer and
computational load
in terms of number
of signals and
channels
to be processed.

TBD Not measured

Availability of
profiling tools for
identifying
processing
bottlenecks and
measuring
efficiency.

Allow for statistical
profiling tools.
Allow for CPU profiling
tools.
Allow for instrumenting
profiler tools.
Statistical execution
time measurement tool
available for the
supported processing
platforms.

GNSS-SDR allows for the usage of several
software profiling tools, see http://gnss-
sdr.org/documentation/how-profile-code for
some examples. The suggested approach
consists of using a set of freely available
profiling tools that use different techniques, in
the hope of taking advantage of their
complementary nature and obtain a better
insight about how the code is performing.

Possibility to either
use synthetically
generated
or real-life
GNSS signals.

- Implemented

http://gnss-sdr.org/documentation/how-profile-code
http://gnss-sdr.org/documentation/how-profile-code

AUDITOR D3.1 Version 1.0

 Page 50 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

Possibility to
process signals
either in real time or
in post-processing
time (only limited
by the
computational
capacity
of the host
machine).

-

AUDITOR’s software receiver architecture
makes use of a thread-per-block strategy and
GNU Radio‘s task scheduler, which manages a
flow graph of nodes. Each node represents a
signal processing block, whereas links between
nodes represents a flow of data.
Under this scheme, software-defined signal
processing blocks read the available samples in
their input memory buffer(s), process them as
fast as they can, and place the result in the
corresponding output memory buffer(s). This
strategy results in a software receiver that
always process signal at the maximum
processing capacity, regardless of its input data
rate. Achieving real-time is only a matter of
executing the full receiver’s processing chain in
a processing system powerful enough to sustain
the required processing load, but it does not
prevent from executing exactly the same
processing at a slower pace, for example by
reading samples from a file, in a less powerful
platform.

Possibility to use
different radio
frequency
front-ends.

-

AUDITOR’s software receiver configuration
system allows the selection of UHD and
OsmoSDR compatible RF front-ends.
AUDITOR’s front-end still TBD but both
receiver’s software architecture and
configuration systems allows for easy addition.

Possibility to define
custom receiver
architectures.

- Implemented

Possibility to easily
define / interchange
implementations
and
parameters for each
processing block.

-

AUDITOR’s software receiver configuration
system allows for an unlimited number of block
implementations and number of parameters for
each particular implementation.

Possibility to deploy
different receiver
architectures and
components.

- Implemented

Possibility to allow
for
unit/component/int
egration/system
testing.

- Implemented

Possibility to be
executed in different
processing
platforms
(mainframes,
personal computers,
embedded systems,
etc).

-

AUDITOR’s software receiver building system,
based on CMake, currently supports i386,
x86_64/amd64, armhf and arm64 processor
architectures.

Flexible
configuration

The software defined
receiver must be fully

AUDITOR’s GNSS software defined receiver
follows a single-file configuration strategy.

AUDITOR D3.1 Version 1.0

 Page 51 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

mechanism. configured in a single
file.
Configuration system
must be arbitrarily
extendable and easy to
use.
Allow possibility of
overriding parameters
via commandline flags.
Required
tools/dependencies
released under open
source license.

Properties are passed around within the
program using a configuration interface class.
Classes that need to read configuration
parameters will receive instances of such
interface class from where they will fetch the
values. The name of these parameters can be
anything but one reserved word:
implementation. This parameter indicates in its
value the name of the class that has to be
instantiated by the processing block factory for
that role. Since the configuration is just a set of
property names and values without any
meaning or syntax, the system is very versatile
and arbitrarily extendable. Adding new
properties to the system only implies
modifications in the classes that will make use
of these properties. In addition, the
configuration files are not checked against any
strict syntax so it is always in a correct status
(as long as it contains pairs of property names
and values in the INI format, see
https://en.wikipedia.org/wiki/INI_file)
For commandline flags management,
AUDITOR’s GNSS software defined receiver
relies on gflags (formerly Google Commandline
Flags), see https://github.com/gflags/gflags.
Gflags is the commandline flags library used
within Google, and differs from other libraries
in that flag definitions can be scattered around
the source code, and not just listed in one place
such as main(). In practice, this means that a
single source-code file will define and use flags
that are meaningful to that file. Any application
that links in that file will get the flags, and the
gflags library will automatically handle that flag
appropriately. There is significant gain in
flexibility, and ease of code reuse, due to this
technique. Gflags is released under the BSD 3-
clauses license.

“Operation modes”
Receiver operable
automatically.

GNSS-SDR can be completely configured and
executed automatically by a shell script. The
software receiver has also been virtualized in
form of Docker container.

GNSS Signals

Signal acquisition,
tracking, decoding of the
navigation message and
generation of code and
phase observables.

GPS L1 C/A

GPS L2C(M)

GPS L5

Ongoing

Galileo E1b/c

https://en.wikipedia.org/wiki/INI_file
https://github.com/gflags/gflags

AUDITOR D3.1 Version 1.0

 Page 52 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

Galileo E5a

Galileo E5b

Ongoing

Signal acquisition,
tracking, and decoding
of navigation message

EGNOS

Ongoing

RF frontend
drivers

The GNSS software
receiver must receive
data at an adequate
bandwidth and sampling
frequency.

AUDITOR’s RF front-end

USRP family

OsmoSDR-compatible

Input data types for
raw samples

AUDITOR’s GNSS
software defined
receiver must allow for
most usual input raw
sample data types (i.e.
bit length, integer and
floating point
encodings) delivered by
available GNSS radio-
frequency front-ends’
analog to digital
converters and
associated software
drivers.

AUDITOR’s raw sample data type

Reading samples represented by 2 bits (sign
and magnitude).

Reading real (IF) samples represented by 1 byte
(8-bit signed integer)

Reading real (IF) samples represented by 1
short (16-bit signed integer)

Reading real (IF) samples represented by 1 float
(32-bit floating point)

Reading I&Q (IF or baseband) interleaved
samples represented by 1 byte (8-bit signed
integer)

Reading I&Q (IF or baseband) interleaved
samples represented by 1 short (16-bit signed
integer)

Reading complex (baseband) samples
represented by 1 byte (8-bit signed integer)
each component.

Reading complex (baseband) samples
represented by 1 short (16-bit signed integer)
each component.

AUDITOR D3.1 Version 1.0

 Page 53 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

Reading complex (baseband) samples
represented by 1 float (32-bit floating point)
each component.

Output formats

The “output products” of
the GNSS software
defined receiver
(position, observables,
navigation data) must be
delivered in (preferably
open) standards in
order to maximize
interoperability with
other software packages.

RINEX v2.11 and 3.02 file generation (obs and
nav). RINEX (Receiver Independent Exchange
Format) is an interchange format for raw
satellite navigation system data, covering
observables and the information contained in
the navigation message broadcast by GNSS
satellites. This allows the user to post-process
the received data to produce a more accurate
result (usually with other data unknown to the
original receiver, such as better models of the
atmospheric conditions at time of
measurement).

RTCM SC-104 provides standards that define
the data structure for differential GNSS
correction information for a variety of
differential correction applications. Developed
by the Radio Technical Commission for
Maritime Services (RTCM), they have become
an industry standard for communication of
correction information. GNSS-SDR implements
RTCM version 3.2, defined in [RTCM 10403.2].

NMEA 0183 is a combined electrical and data
specification for communication between
marine electronics such as echo sounder,
sonars, anemometer, gyrocompass, autopilot,
GPS receivers and many other types of
instruments. It has been defined by, and is
controlled by, the U.S. National Marine
Electronics Association. At the application layer,
the standard also defines the contents of each
sentence (message) type, so that all listeners
can parse messages accurately. Those messages
can be sent through the serial port (that could
be for instance a Bluetooth link) and be
used/displayed by a number of software
applications such as gpsd, JOSM, OpenCPN, and
many others (and maybe running on other
devices).

GeoJSON is a geospatial data interchange format
based on JavaScript Object Notation (JSON)
supported by numerous mapping and GIS
software packages, including OpenLayers,
Leaflet, MapServer, GeoServer,
GeoDjango,GDAL, and CartoDB. It is also
possible to use GeoJSON with PostGIS and
Mapnik, both of which handle the format via the
GDAL OGR conversion library. The Google Maps
Javascript API v3 directly supports the
integration of GeoJSON data layers, and GitHub
also supports GeoJSON rendering. Format
specification freely available at
http://geojson.org/geojson-spec.html

KML (Keyhole Markup Language) is an XML
grammar used to encode and transport
representations of geographic data for display
in an earth browser. KML is an open standard

http://www.rtcm.org/overview.php#Standards
http://www.nmea.org/
http://www.nmea.org/
http://www.catb.org/gpsd/
https://josm.openstreetmap.de/
http://opencpn.org/ocpn/
http://openlayers.org/
http://leafletjs.com/
http://www.mapserver.org/
http://geoserver.org/
https://www.djangoproject.com/
http://www.gdal.org/
https://cartodb.com/
http://postgis.net/
http://mapnik.org/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/examples/layer-data-simple
https://github.com/blog/1528-there-s-a-map-for-that
https://github.com/blog/1528-there-s-a-map-for-that
http://geojson.org/geojson-spec.html

AUDITOR D3.1 Version 1.0

 Page 54 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

officially named the OpenGIS KML Encoding
Standard (OGC KML), and it is maintained by
the Open Geospatial Consortium, Inc. (OGC).
KML files can be displayed in geobrowsers such
as Google Earth, Marble, osgEarth, or used with
the NASA World Wind SDK for Java. Open
standard freely available at
http://www.opengeospatial.org/standards/kml

UNIX-friendly

The binary file that
executes the software
receiver must be
system-wide installable.
Configuration files must
be in plain text format
and human-readable.
Executable must accept
commandline flags.

Implemented

Source code under a
version control
system.

Available under open
source license.
Free public access to the
source code repository.

AUDITOR uses Git as a distributed version
control system and GitHub as the Git server
hosting service.
See https://github.com/gnss-sdr/gnss-sdr
Git is available under the GNU General Public
License v2.

Automated
documentation
system.

Usable in C++, Python
and VHDL source code.
Available under open
source license, and in all
supported
environments.
Easily maintainable.

AUDITOR uses Doxygen
(http://www.stack.nl/~dimitri/doxygen/) the
de facto standard tool for generating
documentation from annotated C++ sources, but
it also supports other programming languages
such as C, Python, and VHDL. The
documentation is written within code, and is
thus relatively easy to keep up to date. Doxygen
can cross reference documentation and code, so
that the reader of a document can easily refer to
the actual code. Doxygen can also visualize the
relations between the various elements by
means of include dependency graphs,
inheritance diagrams, and collaboration
diagrams, which are all generated
automatically. Doxygen is highly portable, and
can generate documentation in HTML and PDF
formats.
Available under GNU General Public License v2.

Automated build
environments.

Provided by Launchpad

(https://launchpad.net/)

Availability of
“debugging modes”
and tools.

Provided by CMake.

Static code analysis

Provided by Coverity Scan

(https://scan.coverity.com/)

Dynamic code
analysis

Provided by Valgrind

(http://valgrind.org/)

https://www.google.com/earth/
https://marble.kde.org/
http://osgearth.org/
http://worldwind.arc.nasa.gov/java/
http://www.opengeospatial.org/standards/kml
https://github.com/gnss-sdr/gnss-sdr
http://www.stack.nl/~dimitri/doxygen/
https://launchpad.net/
https://scan.coverity.com/
http://valgrind.org/

AUDITOR D3.1 Version 1.0

 Page 55 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

Definition of a
source tree
structure

Described in the README file at the root of the

source code tree.

Availability of a
coding style guide.

Coding guidelines and conventions can be found
at:
http://gnss-sdr.org/coding-style/

Supported
processor
architectures

AUDITOR’s processor architecture

i386 processor architecture supported by GNSS-
SDR v0.0.6

x86_64 / amd64 processor architecture
supported by GNSS-SDR v0.0.6

armhf processor architecture supported by
GNSS-SDR v0.0.6

arm64 processor architecture supported by
GNSS-SDR v0.0.6

Usage of a well-
established
building tool

Available for
all the supported
processor architectures,
and under an open
source license.

AUDITOR uses CMake (https://cmake.org) as a
building tool for its GNSS software defined
receiver.
Available under BSD 3-Clause license.

Availability of
software package

AUDITOR’s software
defined receiver should
be easily built and
installed, ideally
requiring one single line
in the user terminal.

GNSS-SDR v0.0.6 is currently undergoing the
acceptance process to be included as a software
package (“.deb”) in Debian 9 (and possibly
followed by Ubuntu and others).

Freely available,
industry-proven
software compilers.

Usable in the processor
architectures and
Operating Systems
described above.
Available under open
source license.

AUDITOR’s software defined receiver can use
GCC (available under the GNU General Public
License v3) and LLVM (available under
University of Illinois/NCSA Open Source
License)

Available for most
popular (Unix-
based)
operating system
distributions.

AUDITOR’s software
defined receiver must be
compilable and
executable (including
the availability of all
required dependencies
in a given environment).

Debian 8 and above (32 and 64 bits)

Ubuntu 14.04 LTS and above (32 and 64 bits)

Linaro 15.03 and above

Apple’s Mac OS X 10.9 and above

http://gnss-sdr.org/coding-style/
https://cmake.org/
http://www.opensource.org/licenses/UoI-NCSA.php
http://www.opensource.org/licenses/UoI-NCSA.php

AUDITOR D3.1 Version 1.0

 Page 56 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

Source code
released under an
open license.

GNSS-SDR is released under the GNU General
Public License v3, as specified in the COPYING
file at the root of the source code tree (as it is
standard practice in the discipline). It can be
checked online at https://github.com/gnss-
sdr/gnss-sdr

Unique identifier for
source code
snapshots.

Every single change in
the source tree (either
on the reference
development branch or
in any other) must be
uniquely identified and
retrievable, keeping an
annotated history of
source code evolution.

Git assigns a 40 character-long identifier to
every revision (i.e, specific snapshot of the
status of every single file present in the
repository), which is the output of the SHA-1
algorithm applied to a set of information
required to recreate the full source tree. Hence,
every single bit change in the source code is
registered by Git, with the added benefit of
integrity over the source code identification.

Availability of a
Digital Object
Identifier for GNSS-
SDR releases

Automated and
persistent DOI
assignment to GNSS-SDR
stable releases.

GNSS-SDR v0.0.9 DOI: 10.5281/zenodo.291371
Every new release of GNSS-SDR will obtain a
new DOI. Automated DOI assignment already
set-up, service freely provided by ZENODO and
GitHub.

Quasi-linear
acceleration with
the number of
cores/ processors

Demonstrated in [7]

Arbitrarily scalable
receiver’s software
architecture.

Implemented.

Arbitrarily scalable
configuration
system.

 See indicator “Flexible configuration
mechanism.”

Logging system

Possibility to set up
severity levels and
verbose modes for
messages.
Possibility to set up
conditional / occasional
logging.
Available under open
source license and for all
supported platforms

AUDITOR uses Google Glog, Google’s C++
logging system (see
https://github.com/google/glog). It provides
simple yet powerful APIs to various log events
in the program. Messages can be logged by
severity level, and the users can control logging
behaviour from the command line, log based on
conditionals, abort the program with stack trace
when expected conditions are not met, and
introduce their own verbose logging levels.
Available under BSD 3-clause license.

Unit test software
framework

Test should be easy to
write for programmers,
letting test writers to
focus on the test content.
Test should be easy to
read for programmers.
Test should be order
independent.
Test should be
deterministic.
Test should be
versionable.
Test should be
automatic.
Tests should be

AUDITOR uses Google Test, Google's C++ test
framework
(https://github.com/google/googletest), which
meets all the required features.
Available under BSD 3-clause license.

https://github.com/gnss-sdr/gnss-sdr
https://github.com/gnss-sdr/gnss-sdr
http://dx.doi.org/10.5281/zenodo.291371
https://github.com/google/glog
https://github.com/google/googletest

AUDITOR D3.1 Version 1.0

 Page 57 (59)

Indicator Requirements Current status
Status

 M0
Status
M16

independent and
repeatable.
Tests should be well
organized and reflect the
structure of the tested
code.
Tests should be portable
and reusable.
When tests fail, they
should provide as much
information about the
problem as possible.
Tests should be fast (less
than 5-10 minutes) to
execute.
Testing framework
available under open
source license, and in all
the supported
environments.

Public source code
repository

 Freely accessible.
 Robust hosting

service.
 Management tools.
 Bug tracking

system.
 Allowing automated

building and other
hooks on new code
changes.

Available at

https://github.com/gnss-sdr/gnss-sdr.git

Communication
channels

Public mailing list Public mailing list

Documentation for
users

Howtos, tutorials.
Documentation is a
never-ending process
that continually gets
feedback from users.

Available at http://gnss-sdr.org/docs/

Documentation for
developers

Identification of a
source-code based
automated
documentation tool.
Documentation is a
never-ending process
that continually gets
feedback from users.

AUDITOR uses Doxygen as the automated
source code documentation tool.
Doxygen is free software, released under the
terms of the GNU General Public License. In-
code documentation, presented in an ordered
manner and generated automatically, helps to
keep an updated version of the source code
manual.

https://github.com/gnss-sdr/gnss-sdr.git
http://gnss-sdr.org/docs/

AUDITOR D3.1 Version 1.0

 Page 58 (59)

4. Conclusion

This deliverable details the design and implementation internals of AUDITOR’s GNSS receiver. The

hardware and software elements of the two main components of the receiver, based on D2.2 [2],

have been defined. The elements devoted to the implementation and communication of the

iBOGART model are detailed in a parallel deliverable also due for submissions in M16, D4.2 [4] and

D5.2 [3].

The development of the RF Front-End (FE) required the design, implementation and validation of a

custom RF board with two custom RF chains and additional controlling firmware. The proposed

design, as defined in the D2.2 specification, receives simultaneously two different bands one fixed

E1/L1 and one configurable L2 or E5a/L5.

Several issues related to EMI, clock generation/distribution and optimization of the chains gains have

been identified and solved during the validation phase of the first version, v1.0. These issues and the

adaptation of the FE to a more convenient form-factor compatible with the high performance ZC706

eval board has motivated the design of a new version, v2.0. This new version is currently being

manufactured and its design and layouts modifications should provide a more robust FE to EMI, with

clock quality improvements and better overall performance in terms of power and spurious signal

rejection.

The development of the Digital Processing Platform required the design, implementation and

validation of multiple complex software elements. This platform is based on a commercial available

System-on-Chip (Zynq) that provides multiple ARM cores and a FPGA processor.

The GNSS-SDR module is one of the key elements that are part of the software receiver. This open-

source project, maintained by CTTC partners, provides the architecture and core blocks to implement

a software GNSS receiver that tackles the challenges of concurrency, efficiency, performance,

portability, real-time/post-processing and extendibility. In order to accomplish this, the design

decouples receiver’s internal control and signal processing, while providing a flexible configuration

system that allows for the required flexibility to implement different processing approaches.

A key feature of the AUDITOR software receiver is the implementation of several IP modules in VHDL

language to allow the real-time efficient processing of multiple Galileo and GPS signals in an

embedded platform. These high optimized modules provide a buffering, acquisition and tracking of

multiple Galileo/GPS signals.

The summary of the indicators status introduced in D2.2 has been updated showing clearly the

advance in the implementation of the required functionalities.

The AUDITOR GNSS receiver has recently started the integration activities where the full RF FE and

software receiver are being validated. The objective is to complete the implementation of the full

system showed in Figure 1.1, which includes the iBOGART model and network software based on

embed and cloud services to provide high level agriculture tools and services.

AUDITOR D3.1 Version 1.0

 Page 59 (59)

5. References

[1] AUDITOR-D2.1 Architecture definition.

[2] AUDITOR-D2.2 Subsystem Specification.

[3] AUDITOR-D5.2 GNSS Network software implementation and test.

[4] AUDITOR-D4.2 Development and validation of the sequential NABS model.

[5] (AUDITOR) Part B.

[6] AUDITOR-D1.3 Test definition.

[7] C. Fernández-Prades, J. Arribas y P. Closas, «Accelerating GNSS Software Receivers,» de Proc. of

the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation

(ION GNSS+), Portland, OR, 2016.

[8] G. Kahn, «The semantics of a simple language for parallel programming,» Information

processing, p. 471–475, 1974.

[9] G. Kahn, «Coroutines and networks of parallel processes,» Information Processing, p. 993–998,

1977.

[10] T. Parks, Bounded Scheduling of Process Networks, Berkeley, CA: Ph.D. thesis, University of

California, 1995.

[11] N. M. a. T. O. T. W. Rondeau, «SIMD programming in GNU Radio: Maintainable and user-friendly

algorithm optimization with VOLK,» de Wireless Innovation Forum Conference of Wireless

Communication Technologies and Software Defined Radio, Washington, DC, 2013.

[12] J. Trimble, «Linux on Zynq, ECE 699 Hardware/SOftware Codesign,» 2015.

[13] Xilinx, «Zynq-7000 All Programmable SoC Overview - Product Specification,» San José, CA, 2016.

[14] Digilent, «Digilent Pmod Interface Specification,» Pullman, WA, 2011.

[15] ARM, «AMBA AXI and ACE Protocol Specification,» 2011.

[16] J. J. J. S. O. C. Hernández-Pajares M., «Application of ionospheric tomography to real-time GPS

carrier-phase ambiguities resolution, at scales of 400-1000 km and with high geomagnetic

activity,» Geophysical Research Letters, vol. 27(13), pp. 2009-2012, 2000.

[17] GNSS-SDR project: http://gnss-sdr.org/.

[18] AUDITOR-D1.2 Requirement definition.

[19] AUDITOR-D1.1 State of the Art.

